Structure Formation and Cosmology with high-z Clusters

Lecture Plan

Piero Rosati (ESO)

L1 : Introduction, observational techniques

- Observational definition, observable physical properties
- Methods for cluster searches Cluster surveys
- Multi-wavelength observations of distant clusters

L2: Clusters as Cosmological Tools

- Constraining cosmological parameters with clusters
- The new population of high-z clusters

L3: Probing Dark Matter in Clusters

- Basics of gravitational lensing (strong and weak)
 - Constraining DM density profiles in cores ACDM predictions
- Clusters as gravitational telescopes

L4: Galaxy populations and evolution in distant clusters

- Star formation history of cluster galaxies
- Evolution as a function of environments
- (Proto-clusters)

XVI IAG/USP Advanced School on Astrophysics, Itatiba, Brazil - Nov 5-9 2012

Can we extend this work beyond redshift one ? [...continues from Lecture 3]

- Can we measure the DM distribution in z>1 clusters with sufficient accuracy ?
 - ⇒evolution of DM distribution
- Can we then measure M₂₀₀ of most distant clusters with sufficient accuracy ?
 - ➡mass calibration of future surveys
 - →test ∧CDM with most massive clusters N(>10¹⁵M_☉,z>1)

Can we extend this work beyond redshift one?

- Can we measure the DM distribution in z>1 clusters with sufficient accuracy ?
 - ⇒evolution of DM distribution
- Can we then measure M₂₀₀ of most distant clusters with sufficient accuracy ?
 - ➡mass calibration of future surveys
 - →test ACDM with most massive clusters N(>10¹⁵M_☉,z>1)

Can we extend this work beyond redshift one?

Distribution of baryons and DM in a distant cluster (z=1.24)

Hot gas with Chandra

with VLT/ISAAC Stellar mass

Weak Lensing with HST/ACS

→ Weak lensing feasible with HST: good news for mass calibration of distant clusters

Distribution of baryons and DM in a distant cluster (z=1.24)

Hot gas with Chandra

with VLT/ISAAC Stellar mass

Weak Lensing with HST/ACS

→ Weak lensing feasible with HST: good news for mass calibration of distant clusters

Probing the DM mass distribution of most distant systems: Lynx clusters (RDCS0848,49) at z=1.27, M=(1-2)×10 14 M_o (Jee et al. 04)

Weak-lensing analysis from HST/ACS of XMM2235 at z=1.39 (Jee, PR et al. 09)

Weak-lensing analysis from HST/ACS of XMM2235 at z=1.39 (Jee, PR et al. 09)

- Shear signal detected out to ~1 Mpc (max >8 σ), beyond Chandra, with 8150s exp. (i₇₇₅ band)
- X-ray and Weak Lensing based masses at r=1 Mpc agree within 5% !

Weak-lensing analysis from HST/ACS of XMM2235 at z=1.39 (Jee, PR et al. 09)

- Shear signal detected out to ~1 Mpc (max >8 σ), beyond Chandra, with 8150s exp. (i₇₇₅ band)
- X-ray and Weak Lensing based masses at r=1 Mpc agree within 5% !

Multiple image system in most distant lens

Multiple image system in most distant lens

Mass components of XMM2235 (at z=1.4!)

Mass components of XMM2235 (at z=1.4!)

The core mass distribution

The core mass distribution

The core mass distribution

WARPSJ1415 at z=1.01 - $M_{200}\approx5\times10^{14}$ M $_{\odot}$ The deepest (370 ksec) Chandra observations of a z=1 cluster

Weak Lensing mass map (Jee et al. 2011)

Santos al. 2011

WARPSJ1415 at z=1.01 - $M_{200} \approx 5 \times 10^{14} M_{\odot}$

The deepest (370 ksec) Chandra observations of a z=1 cluster

Weak Lensing mass map (Jee et al. 2011)

WARPSJ1415 at z=1.01 - $M_{200} \approx 5 \times 10^{14} M_{\odot}$

The deepest (370 ksec) Chandra observations of a z=1 cluster

Weak Lensing mass map (Jee et al. 2011)

Santos al. 2011

Scaling relations at high-z with WL and X-ray studies

Sample of 22 clusters with HST and Chandra data at z=0.95 -1.46

 $\alpha \simeq 3/2$ (self-similar), but lower (20-30%) normalization at high-z ?

Clusters as Gravitational Telescopes

Geometric scaling of Lensing Signal

 Geometrically, strong lensing is maximized at low-to-intermediate redshifts, where, for a given mass, Σ_{crit} is minimal

For a given mass distribution at $z=z_{L}$

$$\Sigma_{\rm crit}^{-1} \propto D_L \frac{D_{LS}}{D_S}$$

$$p(z_S) \propto \Sigma_{\rm crit} \times dN(z)/dz$$

What makes a cluster an efficient gravitational telescope (besides geometrical considerations, D_L,D_S,DL_S)?

- Lensing efficiency (e.g. measured from the number of multiple images) depends from factors which lead to increase the critical area:
 - ellipticity
 - degree of merging
 - degree of substructure
 - cluster concentration (the higher *c*, the higher the lensing efficiency

What makes a cluster an efficient gravitational telescope (besides geometrical considerations, D_L,D_S,DL_S)?

Discovery a highly magnified galaxy at z=5.576 (Ellis et al. 01)

Magnification=3.8 mag ! I_{mag}(unlensed)=29.7 !

Distant Object Gravitationally Lensed by Galaxy Cluster Abell 2218 HST • WFPC2 NASA, ESA, R. Ellis (Caltech) and J.-P. Kneib (Observatoire Midi-Pyrenees) • STScl-PRC01-32

Discovery a highly magnified galaxy at z=5.576 (Ellis et al. 01)

Spatial magnification of (strongly) lensed sources

- Example (Zitrin et al. 2010):
- Reconstruction of a z = 4.92 source lensed by the z = 0.33 cluster MS1358+62.
- Best resolved high-z object: µ≈100, spatial resolution of ~50 pc ! (rest-frame UV)
- Equivalent to 20-m space telescope resolution of a non-lensed z=5 galaxy!
- Typical (or better) resolution of ELTs

A primordial galaxy a z≈7.6 (Bradley et al. 08)

(1 kpc = 0.2" at z=7.6)

H₁₆₀=24.7AB (observed) =27.1AB when corrected for ~9.3x magn.

 M_{S} =(1-4)x10⁹ M_o Age=(40-300) Myr z_F~8-10

Lyman-break galaxy detection

LBG Candidate Selection

- "Drop-out galaxies" selected in color-color diagram
- Require non-detection in (deep) optical band
- Potential contaminants: SNe, cool stars, photometric scatter, spurious detections

Rest-frame UV Continuum Color

Bowens et al. 2011

Searching for galaxies beyond $z \approx 6$

- Near-IR wavelengths are needed, as well as deep optical imaging to exclude very dusty lower z objects
- Landmark progress in recent years thanks to WFC3 on HST:
 - ▶ 9 yr of NICMOS: ~10 galaxies at z>6.5
 - WFC3/IR: 40x more efficient (FOV, sensitivity, resolution) then NICMOS at very high-z → 2 yr of WFC3 produced ~150 at z~7--9 [only a few spec. confirmed at z=7-7.5]

Old HST NIR Camera – NICMOS – 72 orbits

Slide credit: Garth Illingworth, UCSC, Lick Observatory

New HST NIR Camera – WFC3 – 16 orbits

Slide credit: Garth Illingworth, UCSC, Lick Observatory

The advantage of using gravitational telescopes to search for z>7 galaxies

Cluster vs Field strategy

Lensing greatly enhances the ability to detect distant galaxies The blue and red solid curves show the expected number of z=8and z=10 galaxies, respectively, to be discovered behind our 25 clusters as a function of magnitude in the detection band (F110W at z=8 and F140W at z=10).

A significant advantage of searching for high-z objects behind strongly lensing clusters is that the lens model can also be used to discriminate between highly-reddened objects and truly distant, high-z objects as the projected position of the lensed image is a strong function of the source redshift.

Uncertainties on the magnification are not found to be a serious problem for the derivation of the SFR density at very high-z

MACS J0329–02: Quadruply–lensed Galaxy at $z_{ph} = 6.15$

MACS1149–JD1: $z_{oh} = 9.6 \pm 0.2$

Zheng et al. 2012, Nature, Sept.

MACS1149 (z=0.54): high-magnification

J-band dropout criteria: F110W – F140W > 1.3 F140W – F160W < 0.5 <2σ detection in F105W <1σ detection in optical detection image

Zheng et al. 2012, Nature, Sept.

z = 9.6 critical curve

z = 3 critical curve

Delensed image

1 kpc

The Reionization Epoch with HST

Courtesy of L. Bradley

The Impact of Lensing Clusters

Courtesy of L. Bradley

Observational Probes of Cluster Formation & Evolution

Cluster Mass (DM)

- Mass Function (e.g. from X-ray) \Leftrightarrow N-body simulations, Extended PS
- Mass Distribution (inner cores from Lensing) ⇔ CDM simulations

Intra-Cluster Medium (ICM)

- Cluster Scaling Relations (L_x-T, M-T, Entropy, f_{gas})
- Gas Metallicity

⇔ hydro cosmo simulations + SAMs + chemical evolution

baryons

Galaxies/Stellar Mass Assembly

- Spectrophotometry, line diagnostics
- Red Sequence of Early types: normalization, scatter, slope
- Luminosity Function of cluster galaxies
- M/L (fundamental plane), Stellar Mass Function

⇔ stellar synthesis + semi-analytical models (SAM) + hydro simulations

<u>Large look-back times</u> \Rightarrow <u>stronger leverage on models</u> (fractional age differences among galaxies are greater, $\Delta T/T = 1000$ with z)

Color Sequence Evolution: stellar population models for a 2 Gyr burst and z_F = 4,3,2

Evolution of M/L of cluster early-types:
observations and models (van Dokkum et al .02)

 $\Delta \ln(M/L_B) \propto (1.0 \pm 0.2) z = f(\tau, IMF, Z)$

derived from the Fundamental Plane:

$$\log r_e = \alpha \log \sigma + \beta \log < I_e > + \gamma$$

The colour-magnitude diagram in different environments

Baldry et al. 2003

The Color-Magnitude relation in clusters

CMD in the Coma cluster (Terlevich A. et al. 99)

The Color-Magnitude relation in clusters

- The red sequence becomes extremely narrow (<0.05 mag) in the densest environments (clusters)
- Cluster galaxies (in contrast with the field) have a very well defined color- magnitude relation, which appears the same in all clusters (at least out to z<~1)

- Scatter (as small as 0.03 mag) sets strong constraints on age spread for the bulk of stars and challenges all semi-analytical models.
- The stars must be old to have such uniform colors, or formed in well coordinated single event: cluster galaxies are old passively evolved systems
- C-M slope&scatter set limits on degree of merging (number of galaxy mergers after the formation of its stars: reduces slope, increases scatter)
- The CM relations is likely a metallicity sequence, as opposed to an age sequence (given the lack of evolution of the slope and scatter)
- The higher is the redshift at which a tight CM relation is found the stronger the constraints on the age and formation syncronicity of the stellar populations

RDCS1252 (z = 1.24) C-M Relation with HST/ACS and VLT/ISAAC

(Blakeslee et al. 03; Lidman et al. 03)

RDCS1252 (z = 1.24) C-M Relation with HST/ACS and VLT/ISAAC

(Blakeslee et al. 03; Lidman et al. 03)

The scatter $(0.042\pm0.015 \text{ mag in }i-z, 0.06 \text{ in }J-K)$ and slope of the red sequence are very similar to low-z clusters (e.g. Coma)

Using the color sequence to constrain the formation history of ETGs

No (or little) evolution of the CMD slope and scatter out to z=1.4 → The Cluster RS frozen over ~9 Gyr, well within 0.1 mag!

A Nascent Red Sequence at z~2 MRC1138-262 (z=2.16) (Zirm et al. 2008)

SF histories of ETGs in clusters (and field) at z~1.2

A long-standing prediction of hierarchical models is that early-type galaxies in the field are younger and less massive than those in cluster cores, since galaxy formation is accelerated in dense environments...

- Star formation in clusters is **accelerated**, rather than significantly delayed
- Galaxy mass regulates the timing of galaxy formation, the environment regulates the time scale of SFH

SF histories of ETGs in clusters (and field) at z~1.2

A long-standing prediction of hierarchical models is that early-type galaxies in the field are younger and less massive than those in cluster cores, since galaxy formation is accelerated in dense environments...

z~0 (fossil record)

- Star formation in clusters is **accelerated**, rather than significantly delayed
- Galaxy mass regulates the timing of galaxy formation, the environment regulates the time scale of SFH
- Fossil record data in the local Universe show an increased lag between SFHs

SF histories of ETGs in clusters vs field at z~1.2

- General agreement with semi-analytical models (e.g. De Lucia+ 06, Menci+ 08)
- Models however cannot reproduce the very tight relation in clusters (Menci+ 08)

Measuring metallicity of the ICM at z>1

Measuring metallicity of the ICM at z>1

Out to z=1.4: Chandra Observations of XMM2235

 $kT = 8.7^{+1.4}_{-1.2} \text{ keV}$, and $Z = 0.32^{+0.19}_{-0.22} Z_{\odot}$

• Core fit (r=7.5"=60 kpc): $kT = 6.9^{+1.5}_{-1.1} \text{ keV}$, and $Z = 0.59^{+0.29}_{-0.37} Z_{\odot}$

Global fit:

•

Evolution of ICM metallicity from Chandra Observations of distant clusters

WARPSJ1415 at z=1.01 - $M_{200}\approx5\times10^{14}$ M $_{\odot}$ The deepest (370 ksec) Chandra observations of a z=1 cluster

Galaxy populations in distant clusters

Clear signs (from spectro-photometry and morphology) of evolution of ETGs in highdensities at $z\sim1.5-2$ and (perhaps) enhanced AGN activity

Galaxy populations in distant clusters

Identification of the epoch when massive galaxies showed the first signs of SF as a function of galaxy mass, environmental density and cluster halo mass can set tight constraints on galaxy formation models

Intermediate mass clusters at 1.5<z<2 show <u>in their cores</u> increasing (unobscured) SF, merging, disturbed morphologies

→ solid evidence of increasing SF in high density environments at high-z

Elbaz et al. 2007 Saintonge et al. 2008 Hilton et al. 2010 Tran et al. 2010 Fassbender et al. 2011 Gobat et al. 2012 Brodwin et al. 2012

Approaching the epoch of cluster formation

Cluster baryon formation history

Probing Hot and Cold baryons at 1.5<z<2.5 is critical

- The global SF rate and the BH mass accretion rate peak at z~2
- ≈50% of the stellar mass is assembled
- Proto-cluster regions accrete large amount of gas and start radiating in X-ray
- The first massive (~10¹⁴ M_☉) virialized structures form (?)
- The morphology-density relation and the red sequence emerge
- Hubble morphological sequence emerged

THANKS!

XVI IAG/USP Advanced School on Astrophysics, Itatiba, Brazil - Nov 5-9 2012

THANKS!

Message to the students...

- Feel free to email me (prosati@eso.org) for questions, mistakes, references or..
 if you have a good idea about a project with the material I have shown!
- If they tell you that the "golden age of Astronomy is over", don't believe them! They haven't seen anything yet !
- Vast territory ahead for new discoveries: as technology is getting ahead with data volume and quality, intellectual exploitation of this goldmine will remain the main challenge

XVI IAG/USP Advanced School on Astrophysics, Itatiba, Brazil - Nov 5-9 2012