Following the growth of early type galaxies since $z=1$

1) Early Type Galaxies (ETGs)
2) Evolution in number density
3) Estimating number of mergers from pair counts
4) New alternative to estimate number of mergers
5) Effect on the sizes of ETGs.

Nelson Padilla (PUC Chile)
MUSYC Lucia Guaita (Stockholm) , Eric Gawiser (Rutgets), Daniel
Chtistlein, Danilo Märchesini (Tufts), Roberto González (Chicago)

From high redshift populations
 to
 Low redshift populations

Selection of high-z galaxies:

Lyman Break Galaxies: LBGs
Extremely Red Objects: EROs
Lyman alpha emitters: LAEs
DRGs, SMGs, LRGs, BzKs, ...
Different types...

Selection of low-z galaxies:

Volume and flux limited catalogs

1) Early Type Galaxies (ETGs)

Why Early types?

Little or no star-formation activity leads to simple evolution recipes: aging alone (Stellar masses from passively evolved luminosities).

As hierarchical clustering progresses mergers may be expected. If gas free, larger ETGs (but it may be difficult to infer the number of mergers in a statistical way).

Selection: via red sequence, SED fitting, morphologies (difficult even at intermediate redshifts).

Mass selection: descendant samples at different redshifts?
Valid if there is no mass increase.
2) Evolution in the number density of Early Type Galaxies (ETGs)

How can we follow their evolution?

St. Mass Selection: Mass Functions
the number density of massive ETGs seemed to be fixed since very high redshifts, z~2-3
(Marchesini et al., 2009)

2) Evolution in the number density of Early Type Galaxies (ETGs)

NEWFIRM Medium Band Survey Marchesini et al. (2010)
Ok with models at high-z (Guo et al. 2011)

M_{B} and M_{r} are passively evolved luminosities -> stellar mass
2) Evolution in the number density of Early Type Galaxies (ETGs)

Ratios between number density

COMBO17 SXDF DEEP2 MUSYC

 of bright galaxies to the $z=0$ values, for $>1 \mathrm{e} 10 \mathrm{Msun}$ ETGsDashed lines: expected evolution in Λ CDM (De Lucia et al., 2006) shown as an example of evolution in a SAM.

Ratio shows some evolution, also consistent with SAM models.

Padilla et al., 2011, A\&A, 531, 142.
2) Evolution in the number density of Early Type Galaxies (ETGs)

But, are mass-selected samples related in a parent/descendant way, is their mass constant?

3) Estimating mergers from pair counts

Pairs can be
2.a) estimated from correlation functions
2.b) counted

3a) Estimating mergers from pair counts

$$
\begin{aligned}
& \xi(r)=\left(r / r_{0}\right)^{r} \\
& \xi_{M}(r)=b(M) \xi_{\delta(x)}(r)
\end{aligned}
$$

3a) Estimating mergers from pair counts
Pairs about to merge?

To obtain merger rates:
$\xi(r)=\left(r / r_{0}\right)^{r}$
$\xi_{M}(r)=b(M) \xi_{\delta(x)}(r)$

Important:
amplitude of correlation function gives Dark-Matter mass of typical host.

3a) Estimating mergers from pair counts

Mass selection plus Correlation

Functions:

Count Pairs

the fraction of galaxies in close groups can be used to infer number of mergers.

Robaina et al. (2010) for mass selected samples ($M>5 \mathrm{e} 10 \mathrm{Ms}$ un) use the fraction of pairs (COSMOS, COMBO-17)

$$
P\left(r \leqslant r_{f}\right)=\int_{0}^{r_{f}} n[1+\xi(r)] d V .
$$

Proving mass-selected samples are not related in a parent/descendant way.

See also Patton et al. 2000; Le Fevre et al. 2000; Lin et al. 2004; Kartaltepe et al. 2007

3b) Estimating mergers from pair counts

Counting pairs in a spectroscopic survey

Also using

Millennium simulation merger timescales

4) New approach to obtain merger rates
combine clustering measurements and space densities

■ and \mathbf{A} :
Early-types, same stellar mass
\square and \triangle :
All galaxies brighter than $M_{r}=-21$

4) New approach to obtain merger rates

Early-types, same stellar mass
\square and \triangle
All galaxies brighter than $M_{r}=-21$

Blue lines:
Haloes followed in a numerical simulation (to help understand evolution). Similar to assuming EPS-SMT

4) New approach to obtain merger rates

MUSYC results on clustering-selected Descendant luminosities:

According to clustering measurements, ETGs of similar stellar mass would evolve to different final typical stellar masses from different redshifts.

Factor x10 increase in mass for sample of $>1 \mathrm{e10Msun}$ ETGs
Compare space densities of progenitors and descendants
4) New approach to obtain merger rates: uses 2) but with $M^{*}(z)$ Combining with MUSYC LF measurements:

ETG merger rates!
Top: Ratio of number density of clustering-selected ETGs at redshift z, to that of their $z=0$ descendants

Bottom: Ratio of Luminosity density of descendants to redshift z
ETGs
 redshift
5.5 +- 4.0 mergers since $z=1$ seem to be needed. Major or minor? Padilla et al., 2011, A\&A, 531, 142

Factor $x 10$ increase in mass for sample of $>1 \mathrm{e} 10 \mathrm{Msun}$ ETGs

$$
5.5+-4.0 \text { mergers since } z=1 \text { seem to be needed }
$$

Major or minor?

This is an important question, since this can help understand the increase in average mass of the sample (e.g. minor mergers deplete low mass end), and the type of merger influences the size evolution of the ETGs.

Marchesini et al. (2009)
4) New approach to obtain merger rates

Combining with MUSYC LF measurements with universal HOD from the Boötes Field (from Brown et al, 2008, 2010)
Fits to correlation function assuming occupation distribution:

4) New approach to obtain merger rates

Combining with MUSYC LF measurements with universal HOD from the Boötes Field (from Brown et al, 2008, 2010)

Nelson Padilla - PUC Comparison between results of 3) and 4)

Padilla et al., 2011, A\&A, 531, 142
Case of $z=1$ ETGs and their $z=0$ descendants with Brown+ HODs:
$z=1:(80 \pm 5) \%$ are centrals
$z=0:(93 \pm 4) \%$ are centrals

Use sharp cutoffs in luminosity to separate centrals and sats:
Centrals increase their luminosity by $\times 1.7(+2.2-0.5)$ Satellites increase theirs by a factor $x 2.5(+1.0-1.2)$

Total luminosity in progs. to that of desc.
Centrals decrease their num. density Satellites decrease their num. density

$$
x 4(+4-2) \quad \text { SINK? }
$$

(Conroy+ 07)
$\times 4.0(\pm 2)$
$\times 10(\pm 7)$

Nelson Padilla - PUC Comparison between results of 3) and 4)

Padilla et al., 2011, A\&A, 531, 142
Case of $z=1$ ETGs and their $z=0$ descendants.
From an average of 4 mergers needed, only one occurs with another central galaxy (dashed).
$\sim 31 \%$ of galaxies undergo a major merger since $z=1$
$\sim 4 \%$ probability of Major merger/gx/Gyr.
~70\% of major mergers are with another central.

5) Consequences for ETG sizes

Number of mergers that provide the observed size evolution.

Christlein et al. 2009, MNRAS, 400, 429 Padilla et al., 2010, MNRAS, 409, 184 Padilla et al., 2011, A\&A, 531, 142
 Conclusions

QETGs are an attractive population of galaxies to study evolution due to their simple properties.
QNumber density evolution useful for comparison between models, but involves samples that are not direct descendants when connecting these TLAs with SDSS.
OPair counts provide evidence of mergers, which reinforces previous point.
-Combining clustering and number density evolution provides consistent estimates of merger rates.
QMerger rates in some tension with size evolution.
Nelson Padilla (PUC Chile)
MUSYC: Lucia Guaita (Stockholm), Eric Gawiser (Rutgets), Daniel
Christlein, Danilo Marchesini (Tufts), Roberto González (Chicago)

Come to Católica

QSimulations group now consisting of 2 staff, 4 postdocs, 3 PhD students.
Semi-analytics, DM and Hydro simulations
ORecently updated computer of 20Tflop and 4 HB memory
OExcellent synergy with observational galactic and extragalactic astronomy groups, and

Sometimes a nice view of the Andes

Obrigado!

