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Astrophysical jets: a basic overview 

• What is an astrophysical jet??? 

• Basically, a stream of particles. According to Bridle & 

Perley (1984), to be termed jet, the candidate must be: 

i. at least four times as long as it is wide; 

M 82 

Credit: NASA, ESA, CXC, and JPL-Caltech 
M 87 

Credit: NASA and The Hubble Heritage Team (STScI/AURA) 

Outflow or wind 
(R/L >0.25) 

Jet 
(R/L <0.25) 



Astrophysical jets: a basic overview 

• According to Bridle & Perley (1984), to be termed jet, the 

candidate must be: 

ii. separable at high resolution from other standard structures 

either spatially or by brightness contrast; 

M 87 

Credit: NASA and The Hubble Heritage Team (STScI/AURA) 



Astrophysical jets: a basic overview 

• According to Bridle & Perley (1984), to be termed jet, the 

candidate must be: 

iii. aligned with the compact core when the former is close to it; 
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Cygnus A 

Credit: NRAO/AUI 

Astrophysical jets: a basic overview 

• Let me include an extra item: 

iv. to be termed jet, the candidate must be pointing toward an 

hypothetical observer; otherwise, it is a counter-jet.  

Jet 

Counter-jet 



Astrophysical jets: a basic overview 

• A plenty of models (e.g., 

Blandford & Znajek 1977, 

Blandford & Payne 1982; Shu et 

al. 1994; Livio et al. 2003; de 

Gouveia dal Pino & Lazarian 

2005); 

• Basic ingredients behind jet 

formation: 

 Accretion disc; 

 Central object dominating the 

dynamics of the disc; 

 Large scale magnetic field; 

 BH rotation (???). 
Marcowith, Henri & Pelletier (1995) 



Astrophysical jets: a basic overview 

• Jet is not necessarily collimated at all scales; 

Total jet collimation? 

(Junor, Biretta & Livio 1999, Nature, 401, 891) 

Jet collimation process in M87 (Junor, Biretta & Livio 1999): 



Extragalactic jets in radio frequencies 

• Let us concentrate our discussion on extragalactic jets… 

• Where can these jets be found??? 

Basically in radio-loud AGNs! 

For a general review 

on unified model for 

radio-loud sources, 

see Urry & Padovani 

(1995). 



Extragalactic jets in radio frequencies 

(Roy 1994) 



Extragalactic jets in radio frequencies 

• A (very) brief historical timeline about extragalactic jets… 

M87 or NGC4486 

Baade & Minkowski (1954) • At radio frequencies: 

 Jet-like feature detected by Hazard et al. (1963) using lunar 

occultation method (two components – core and jet – separated 

by ~20”); 

 Detection of two components in M87 by Miley et al. (1970): one 

coinciding with the optical nucleus, while the other with the tip 

of the optical jet; 

 First detection of superluminal motions in parsec-scale jets 

obtained by Whitney et al. (1971) and Cohen et al. (1971). 

• First noted observationally in M87 

(Curtis 1918) and analyzed later by 

Baade & Minkowski (1954); 



M87 

Credit: X-ray: NASA/CXC/MIT/H.Marshall et al., Radio: F.Zhou, F.Owen (NRAO), J.Biretta 

(STScI), Optical: NASA/STScI/UMBC/E.Perlman et al 

Extragalactic jets in radio frequencies 

• Kiloparsec-scale jets may be detected at different 

wavelengths (e.g., Lelievre et al. 2004; Jester et al. 2007; Worrall 

2009): 

But this is not the rule!!! 

(less than 20 extragalactic 
jets has optical counterpart 
detected) 

Why?  
As they are associated to 
powerful radio sources, 
relativistic beaming may be 
playing a significant role on 
detection (e.g., Scarpa & Urry 
2002; Jester 2003). 



Extragalactic jets in radio frequencies 
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3C47 

Credit: http://www.jb.man.ac.uk/atlas/object/3C47.html 

Typical radio 

morphology of a 

kiloparsec-scale jet  



Image courtesy of NRAO/AUI  

Extragalactic jets in radio frequencies 
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dependence 

with scale 



Extragalactic jets in radio frequencies 

• How obtain radio maps of extragalactic jets at kpc-scale? 

• Single dish observation???  

No! Poor angular resolution... 

e.g., for l = 1.36 cm (22 GHz) and D = 13.7 m, q ~ 4’ 

(worse than typical human eye’s resolution) 

rad22,1
D

l
q 

• What to do? 

• Array of telescopes… 

Australia Telescope Compact Array (ATCA) 



Extragalactic jets in radio frequencies 

Multi-Element Radio-Linked Interferometer (MERLIN) 



Very Large Array (VLA) 

Extragalactic jets in radio frequencies 



Jet kinematics of parsec-scale radio jets 

• How obtain radio maps of extragalactic jets at pc-scale? 

• Array of radio telescopes separated at continental 

distances: Very Large Baseline Interferometry (VLBI). 

Very Large Baseline Array 
(VLBA) 



Jet kinematics of parsec-scale radio jets 

• Proper motion (m): 

– Core-component angular separation as a function of time; 

– Unit (in VLBI): mas/ano; 
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• Apparent speed(app): 

– Source distance must be known; 

– Some cosmology must be assumed a prior; 

Abraham et al. (1986) 

3C 273 



Jet kinematics of parsec-scale radio jets 

• Another example: the quasar 3C 279. 

• 3C 279 is one of the AGNs that exhibits superluminal 

motions in its jet. 



Jet kinematics of parsec-scale radio jets 

• Superluminal motions: 

 First detected in quasars 3C 273 e 3C 279 (Whitney et al. 1971; 

Cohen et al. 1977; Cotton et al. 1979); 

Whitney et al. (1971): angular displacement of 1.55 ± 0.03 mas in 

four months      app = v/c = 10 ± 3! 



Jet kinematics of parsec-scale radio jets 

• Superluminal motions: 

 Detected in several objects later; 

 Typical apparent speeds range from 3 e 10c, reaching ~50c 

(Lister et al. 2009); 

 Reason: component moving close to l.o.s. with v~c (Rees 1966); 

 Component ejected at time t0 =0; 

 Emitted radiation at t0 is 

detected by an observer at a 

luminosity distance DL after an 

interval Dt: 
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Jet kinematics of parsec-scale radio jets 

• Component recedes a distance (from 

the core) of VDt’ after an interval Dt’, 

producing a projected displacement 

on the plane of the sky: 

sinproj tVL D

• Radiation emitted after Dt’ will be 

detected by the observer at instant 

t2:  
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2

tVD
tt

D
D

• The elapsed time between t2 e t1 

corresponds to: 

  cos112 DD tttt

• Thus, the apparent speed of 

the jet knot is given as: 
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Jet kinematics of parsec-scale radio jets 

• Other consequences of relativistic motions are the 

beaming and Doppler boosting effects (e.g, Rybicki & 

Lightman 2004): 

v << c 

Non-relativistic case 

v ~ c 

Relativistic case 

q ~1/g 
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• Blandford & Lind (1985): 
p

obs SS d0

p = 2 + a (continuous jet) 

p = 3 + a (clumpy jet) 

Sn  n -a 



Some statistical aspects of parsec-scale 
radio jets 

• MOnitoring of Jets in Active Galactic Nuclei with VLBA 

Experiments (MOJAVE) (e.g., Lister et al. 2009): 

 To investigate the pc-scale jet kinematics of a complete flux-

density-limited sample of 135 AGNs in the northern sky at 2 cm; 

 Analyzed data set spans 13 years of observations since 1994 

(observations are still ongoing);  

 Kinematical parameters of jet knots derived from (u,v)-plane, 

assuming two-dimensional Gaussian shape for them (mainly 

elliptical Gaussians for core and circular ones for components); 

• Important! MOJAVE team provides a public archive of 

images and other products related to those jets 

(http://www.physics.purdue.edu/MOJAVE/index.html). 



Some statistical aspects of parsec-scale 
radio jets 

• Some specific results concerning jet kinematic (Lister et al. 

2009): 

Low pattern speed 

knots located mostly 

inside 8 pc from the 

core. 

 

Standing shocks in 

the flow or low 

viewing angle effect? 



Some statistical aspects of parsec-scale 
radio jets 

• Some specific results concerning jet kinematic (Lister et al. 

2009): 

50.62.1c 

Quasar 0805-077  

(z=1.817; White et al. 1988)  

Peaked at ~10c 

See also Piner et 
al. (2012) 



Deriving structural parameters of VLBI jet 
components 

• Regular model fitting tasks used in the analyses of 

interferometric images suffer from some limitations: 

 Impossibility to fit simultaneously more than 4 components; 

 Gradient-based fitting methods (prone to find a local minimum 

solution if we do not choose appropriately the initial 

parameters); 

 Depend on initial guess for the model parameter values; 

 Number of components is not constrained by the own fitting 

procedure. 

• How to overcome such limitations? 

• Cross-entropy method for continuous multi-extremal 

optimization (Rubenstein 1999; Kroese et al. 2006; Caproni et al. 2009; 

Monteiro et al. 2010, 2011, Caproni et al. 2011, 2012); 
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Deriving structural parameters of VLBI jet 
components 

• Caproni et al. (2011, ApJ, 736, 68): 

 CE model fitting implemented to work out in the image plane; 

 Shape of the jet knots modeled as 2D elliptical Gaussian sources; 

 Why? Dirty beam usually has elliptical shape (convolution between 

elliptical 2D Gaussian and punctual source  2D elliptical source); 

 Gaussian parameters: intensity (I0) and center coordinates (x0 and 

y0) of the peak, major axis (a), eccentricity [e = (1-b2/a2)1/2] and 

structural position angle (y); 

(Vermeulen et al. 2006, A&A, 447, 489) 
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Deriving structural parameters of VLBI jet 
components 

• If there are Ns sources in an image with Npixel pixels, there 

are 6Ns parameters to be determined; 

• How is it done via CE technique? 

i. Choice of the upper and lower limits for the tentative values of the 

Gaussian parameters, keeping them fixed during optimization 

processes; 
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Deriving structural parameters of VLBI jet 
components 

iii. Selection of the Nelite-best 

sample based on the 

minimization of the merit 

function Sprod among N 

tentative solutions above: 
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Model 
versus 
data 

(observation) 

ii. Normal random generation of the initial parameter sample 

composed of N tentative solutions, based on the mean of the pre-

defined limits given in i): 
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Deriving structural parameters of VLBI jet 
components 

iv. Random generation of updated parameter samples from the 

previous best Nelite candidates to be evaluated in the next iteration k: 
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v. Optimization process repeats Steps (ii) and (iv) while, e.g., k ≤ kmax. 



Deriving structural parameters of VLBI jet 
components 

• Some remarks concerning CE: 

 It is a heuristic method (no proof on convergence for continuous 

optimizations); 

 Therefore, it needs (a lot of!) validation tests to assure that 

convergence to the optimal solutions can be reached: 

 Influence of the CE parameters (e.g, N, Nelite, etc.); 

 Stopping optimization criteria (maximum iteration, RMS, etc.); 

 (The most suitable) merit function; 

• A lot of computational work to obtain trustful results… 

 

 

• Validation tests can be found in Caproni et al. (2011). 



Deriving structural parameters of VLBI jet 
components 

• A quiz (to check if you are not 

sleeping)…  

• How many source components are 

present in the following image? 

• Answer: three sources. 

• Indeed, it is difficult to assure this 

from visual inspection only… 

log(Jy/beam) 



Deriving structural parameters of VLBI jet 
components 

• Validation test J1: 

 Three sources; 

 Brightest component (C1): 2 Jy/beam 

(~3883·RMS); 

 Dimmest source (C3): 0.2 Jy/beam 

(~388·RMS); 

 Eccentricity varies from 0.7 to 0.9; 

 Some degree of superposition between C3 

and C2 (~583·RMS); 

 18 parameters to be optimized! 

 N = 3645 and Nelite = 20. 

C1 

C3 

C2 

log(Jy/beam) 



Deriving structural parameters of VLBI jet 
components 

• Validation test J1: 



Deriving structural parameters of VLBI jet 
components 

• Validation test J1: RMS level reached!!! 

C
o
n
tr

o
l 
im

a
g
e
 

O
p
ti
m

iz
e
d
 i
m

a
g
e
 



Deriving structural parameters of VLBI jet 
components 

Three sources (J1 jet) – Caproni et al. (2011) 

Contour lines: image 

Gray-scale image: CE image 

Elipses: FWHM 

Crosses: Peak position 

More than 3 sources do not improve the fit! 



Deriving structural parameters of VLBI jet 
components 

• Validation test J7: 
 Seven sources; 

 Brightest component (C1): 0.85 

Jy/beam (~1836·RMS); 

 Dimmest source (C7): 20 mJy/beam 

(~43·RMS); 

 Eccentricity varies from 0.25 to 0.8; 

 High degree of superposition: 

  between C1 and C2 (~713·RMS); 

  C6 (~173·RMS) with C7 and C5 

(~216·RMS); 

 Some degree of superposition 

between C3 (~108·RMS) and C4 

(~432·RMS); 

 42 parameters to be optimized! 

 N = 22050 and Nelite = 20. 
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Deriving structural parameters of VLBI jet 
components 

• Validation test J7: 



Deriving structural parameters of VLBI jet 
components 

• Validation test J7: RMS level reached!!! 
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• Astrophysical jets: 

 Found in several objects in the Universe; 

 Formation is not fully understood yet; 

 Impact on ISM (IGM): AGN feedback, X-ray bubbles, etc. 

• Extragalactic jets: 

 Few detected in optical or X-ray wavelengths; 

 Generally associated to radio-loud AGNs; 

 Relativistic flows at parsec-scale (even at kiloparsec-scales in some cases); 

 Beaming and Doppler-boosting effects; 

• Jet kinematic studies at parsec-scale: 
 VLBI studies: necessity of good coverage in (u,v)-plane, as well as time monitoring; 

 (Traditional) model fitting:  

 Dependence on number of components assumed in model-fitting; 

 Limitation in the number of components fitted simultaneously; 

 CE technique: 

 Able to recover the parameters of the sources with a similar accuracy to that obtained from 

the traditional AIPS task IMFIT when the image is relatively simple; 

 Presents superior performance for more complex images; 

 Quantitative estimate of the number of individual components present in a VLBI image; 

Final remarks 


