Astronomy & Asrophysics

Observing Accretion Disks III:

Emission and Absorption Lines from AGN Disks

by Mike Eracleous

XIV IAG USP School On Astrophysics,

August 3–8, 2008

Águas de São Pedro - SP - Brazil

Organization of Lecture III

3

Emission lines from AGN disks

- Intro to AGN spectra and physical picture
- Optical emission lines from "outer" disk and their use as a tool to study disk structure
- X-ray emission lines from inner disk

Absorption lines from disk outflows

- Broad and narrow UV resonance lines
- high-velocity lines in X-ray band

Crash course on AGN spectra 4

Animals in the zoo

- Quasars (OSRs, OSOs)
- Seyfert galaxies

- type I, II
- LL-AGNs, LINERS
- NELGs, **XBONGs**

- Radio galaxies BL Lacs
 - BLRGs, + **NLRGs**
 - FR I, FR II **+**
 - GPS, CSS + sources

- - + HBL, LBL XBL, RBL
- Blazars
 - HPQ
 - **FSRQs** +
 - **OVVs**

Optical spectra of quasars

UV spectrum of a quasar

Examples of emission-line profiles

10 The Hα line close up

What is the AGN Broad-Line Region?

The old-fashioned view:

- "Clouds" orbiting the "central engine."
- Dynamics and survival were a puzzle.
- Idea of clouds entrenched. Not much attention to other plausible models.

Fig. 1. Response of astronomers to a fashionable new idea.

from McCray, 1979, in "Active Galactic Nuclei," eds. Hazard, C. & Mitton, S. (Cambridge: Cambridge University Press), p.227

The accretion disk?

(Collin-Souffrin 1987, Collin-Souffrin & Dumont 1989, 1990a–d, Rokaki et al. 1992)

Density too high to emit all lines; two regions required for low- and high-ionization lines.

A hydromagnetic wind?

(Emerring, Blandford & Shlosman 1992, ApJ, 385, 460; Köenigl & Kartje 1994).

Serves to remove angular momentum from the disk too.

Radiatively accelerated wind?

(Shields 1977; Mestel, 1979; Arav et al. 1994; Murray et al. 1995; Proga et al. 1998–...)

Explains BAL quasars and has implications for galaxy evolution.

Radiatively accelerated wind?

(Shields 1977; Mestel, 1979; Arav et al. 1994; Murray et al. 1995; Proga et al. 1998–...)

Explains BAL quasars and has implications for galaxy evolution.

from Proga et al. 2000, ApJ, 543, 686

BLR structure from Reverberation

17 **Rverberation Mapping**

 A continuum flare is followed by an echo in the emission-line region

Isodelay surfaces defined
 by cr (1+cos θ)=τ

Isodelay surfaces superposed on a disk

from Peterson 1993, PASP, 105, 247

18 **Potential and Results**

 Basic principle (Blandford & McKee 1982): transfer equation

Examples of Observed Time Lags 19

from Peterson 1993, PASP, 105, 247

20 Immediate Results

Systematic reverberation mapping of about two dozen AGNs in the optical.

A few objects targeted in multi-wavelength campaigns (optical +UV+X-Ray)

The emission-line fluxes respond to changes in the continuum with some delay but the line profiles do not change appreciably

> The hope of mapping the velocitydependent structure of the broadline region has not been realized.

21 What did we learn?

- Hardly any radial motion of the gas
 Both sides of line profile respond at the same time
- Light-crossing time of broad-line region

Typically a few light weeks but stratified in ionization (higher-ionization lines respond first)

• Correlation between size and luminosity

 $R_{BLR} \propto L_c^p$ with $p \approx 0.5$

• Line ratios change as the continuum fluctuates Continuum shape changes with luminosity **Smothness of line profiles**

(e.g., Arav et al. 1997, 1998; Laor et al. 2006).

Requires a large namber of "clouds"

BUT...

Photoionization models and luminosity

yield a small region that cannot fit all of these clouds (discrepancy by 1-2 orders of magnitude)

Double-Peaked Balmer Lines

- FWHM ~ 15,000 km/s (up to 40,000 km/s!)
- Corresponds to ξ ~ 500
 (in an edge-on accretion disk)
- Relativistic effects (special+general) are important but can be treated approximately

24

25 Fits to the line profiles

from Eracleous & Halpern 1994, ApJS, 90, 1

26 What powers the emission lines?

- Energy budget test → photoionization (e.g., Strateva et al. 2006, 2008)
 - → leads to ion torus hypothesis

- Black hole masses → Eddington ratios (Lewis & Eracleous 2006)
 - → ion torus not a universal scenario

27 In the grand scheme of things...

figure from Flohic, 2008, PhD Thesis, Penn State

28 Most Relevant Time Scales

Light-Crossing: 6 M₈ ξ₃ days

Dynamical: $6 M_8 \xi_3^{3/2}$ months

Thermal: 5 α_{-1}^{-1} M₈ $\xi_3^{3/2}$ **years**

Sound-Crossing: 70 M₈ ξ_3 T₅^{-1/2} years

Viscous: $10^6 \alpha_{-1}^{-4/5} M_8^{3/2} \xi_3^{5/4} m_{-1}^{-3/10}$ years

29 Large profile variations over time

Storchi-Bergmann et al. 2003, ApJ, 598, 956

Gilbert et al. 1998

30 Models for the variations

From Lewis et al 2008, in preparation

32 Diagnostic tests so far...

- Long-term monitoring → global perturbations of the disk (e.g., Gilbert et al. 1998, Storchi-Bergmann et al. 2003, Gezari et al. 2007, Lewis et al. 2008)
- Velocity-resolved power spectra → disk fragmentation (Flohic & Eracleous 2008)
- UV spectroscopy → ionization structure of disk, feeble outflows (Halpern et al. 1996, Eracleous et al. 2003)
- Connection to the greater AGN population (Flohic & Eracleous 2008, in preparation)

X-Ray Emission From AGNs

34 The basic picture

- The accretion disks of AGNs are not hot enough to emit thermal X-rays.
 Recall Lecture 1: T ~ 10⁵ K
- But AGNs emit hard X-rays, up to ~ 100 keV
 - Observed X-ray spectrum is roughly a power law
 - $F(E) \propto E^{-\alpha}$ with $\alpha \approx 0.8-1.0$
- In a small fraction of objects, the X-rays are produced in a jet pointed at us.

35 X-Ray Emission from AGNs

36 X-Ray Emission Flowchart

Hot corona

- May resemble coronal loops of stars.
- Powered by magic.
- Electrons may have power-law (or thermal?) energy distribution.

37 X-Ray Emission Flowchart

Soft photons from the disk (kT~20 eV) illuminate the coronal plasma.

- Compton up-scattering 20 eV \rightarrow 1–100 keV
- Some up-scattered photons go to the observer and some go back to the disk

38 X-Ray Emission Flowchart

Photons returning to the "cool" disk...

- ionize it and heat it up,
 - some are scattered back out by bound atomic electrons, suffering photoelectric absorption along the way

39 **Observer sees sum of all spectra**

from Minuitti et al. 2007, PASJ, 59S, 315

40 Emergent disk spectrum

 Emergent disk spectrum depends on ionization state

from Ballantyne et al 2001, MNRAS, 327,10

40 Emergent disk spectrum

 Emergent disk spectrum depends on ionization state

from Ballantyne et al 2001, MNRAS, 327,10

41 **Comparison of Model to Data**

from Minuitti et al. 2007, PASJ, 59S, 315

42 Zooming in on the Fe Kα Line

from Minuitti et al. 2007, PASJ, 59S, 315

42 Zooming in on the Fe Kα Line

from Minuitti et al. 2007, PASJ, 59S, 315

First Fe Kα profiles from ASCA 43

44 **Spinning or Not?**

From Nandra et al. 1997 ApJ, 477, 602

45 Absorption+Scattering Though Wind

From Sim et al. 2008, MNRAS, in press

From Sim et al. 2008, MNRAS, in press

47 If the line is coming from the disk...

Mrk 766

Energy / keV

from Turner et al. 2006, A&A, 445, 59

NGC 3516

48

from Iwasawa et al. 2004, MNRAS, 355, 1073

49 In the Future: Echos of Flares

Young & Reynolds 2000, ApJ, 529, 101

Absorption from Outflows

51 The zoo of UV absorption lines

- BALs: Broad Absorption Lines
 - smooth, deep, blue-shifted absn. troughs in UV resonance lines
 - FWHM > 2,000 km/s (traditional definition) and easily up to 30,000 km/s
 - ▶ found in ~20% of all quasars
 - do these absorbers/outflows represent a phase in the evolution of every quasar, or do they cover a small solid angle in all quasars ?

52 Progression of BALs

53 CSO 673: Example of a BAL Quasar

from Junkkarinen et al. in prep (plot courtesy of Fred Hamann)

54 Zoo of UV absorption lines continued

- NALs: Narrow Absorption Lines
 - UV resonance doublets must not be blended
 - FWHM < 500 km s⁻¹, based on C IV $\lambda\lambda$ 1448,1451
- "mini-BALs": narrower than BALsCatch-all for everything in between
 - wide variety of profiles
 - Are they "mini-BALs" or "super-NALs"?

Examples of mini-BALs and NALs

56 **Distribution of Line Widths**

from Rodriguez et al. in prep (plot courtesy of Paola Rodriguez)

57 High-Velocity X-ray lines in quasars

- Example: PG 1115+080
 - * z=1.72 (lensed)
 - Fe XXV and XXVI
 - Δυ ~ 0.36 c
 - Variable lines

Chartas et al. 2007,
 AJ, 133 1849

58 High-Velocity X-ray lines in quasars

- Example: PG 1211+143
 z=0.0809
 - Multiple lines
 - Δυ ~ 0.14 c
 - $\dot{M}_{out} \sim 3.4 \text{ M}_{\odot}/\text{yr}$

 Pounds & Page 2006, MNRAS, 372, 1275

59 UV and X-ray absorption in Seyferts

60 Comparison of X-ray and UV lines

ろ al. 2001, ApJ, 552, et Collinge

61 **Properties of absorption lines**

- BALs found in $\sim 20\%$ of quasars
 - same family as mini-BALs
 - ♦ FWHM up to 30,000 km s⁻¹
- NALs found in ~50% of quasars
 - up to $\Delta v \sim 60,000 \text{ km s}^{-1}$
 - ~ 30% of all NALs are intrinsic
- UV and X-Ray abs lines in ~ 50% of Seyferts
 - ∆υ ~ 2,000 km s⁻¹
 - similar UV and X-ray line profiles

62 Families of disk wind models

Line-Driven

- Murray+05; Proga+...
- Magnetocentrifugal + Line
 - Köenigl & Kartje 94;
 Proga 00; Everett 05

- Thermally Driven (via X-Ray heating of dusty torus)
- Krolik & Kriss 95,01;
 Chelouche & Netzer 05

The End