
REGULAR MOTIONS IN EXTRA-SOLAR PLANETARYSYSTEMS.S.FERRAZ-MELLO, T.A.MICHTCHENKOInstituto de Astronomia, Geof��sica e Ciências Atmosf�ericas,Universidade de S~ao Paulo, Brasil (sylvio@usp.br)ANDC.BEAUG�EObservat�orio Astron�omico, Universidad Nacional de C�ordoba,Argentina (beauge@oac.unicor.edu)Abstract. This paper is a review of the dynamics of a system of planets. Itincludes the study of averaged equations in both non-resonant and resonantsystems and shows the great deal of situations in which the angle betweenthe two semi-major axes oscillates around a constant value. It introducesthe Hamiltonian equations of the N -planet problem and Poincar�e's reductionof them to 3N degrees of freedom with a detailed discussion of the non-osculating \canonical" heliocentric Keplerian elements that should be usedwith Poincar�e relative canonical variables. It also includes Beaug�e's approx-imation to expand the disturbing function in the exoplanetary case wheremasses and eccentricities are large. The paper is concluded with a discussionof systems captured into resonance and their evolution to symmetric andasymmetric stationary solutions with apsidal corotation.1. IntroductionThe discovery of the �rst extra-solar planet in orbit around a main-sequencestar was announced in 1995. Since then, the number of known extra-solarplanets did not cease to grow. As the observations are accumulating, plane-tary systems with 2 and 3 planets are being discovered. More than ten are,presently, known1. As the discoveries are recent and many of the discoveredplanets are at the edge of observational capabilities, the uncertainties on1For an up-to-date list see the web page \Extra-Solar Planets Encyclopaedia", byJ.Schneider at www.obspm.fr/planets and links therein.



2their orbital elements and masses are large. It is worth recalling that oneof the 2-planet systems previously announced, HD 83443, vanished fromthe lists after new observations failed to show the radial velocity variationspreviously identi�ed with a second planet. Another important example ofthe current uncertainties is the \jump" su�ered by the determined eccen-tricity of HD 82943b. During long time, it was listed as � 0:4, while anew determination using observations over a long span of time gives only0:18. By the same occasion, the mass of HD 82943c became twice biggerthan believed before (Mayor et al., 2004). These discrepancies should beenough to show us how hazardous is the task of getting conclusions fromthe present data and that we should avoid conclusions critically dependingon the available data.In the current state of art, we are just capable of discovering big planetswith not too large periods. Therefore, the planets so far discovered are bigand most of them have orbits close to the central stars. Another character-istic is the large eccentricities of many of them. Even if large eccentricitiesfavors discovery, this characteristic is not only due to observational biasand needs an explanation. (See Perryman 2000 for a review of the exist-ing hypotheses.) Large eccentricities are considered as the result of earlymigration processes. It is generally believed that the planets did not format their present observed locations, but were driven by a migration pro-cess due to tidal interaction of the planets with the discs where they wereformed (see Papaloizou, 2003). Whether this orbital drift is still at workor not is a matter of debate, although it is more plausible to assume thatit stopped after the end of the planetary formation stage. These early pro-cesses were also responsible for having driven the (surviving) systems tovery stable conditions in which orbit periapses appear close to alignmentor anti-alignment. This condition is observed in several systems.Periapses alignment (or anti-alignment) may occur in resonant and non-resonant systems alike. In resonant systems, they are the natural states afterthe system is trapped into a mean-motion resonance (see section 6). At vari-ance, in non-resonant system, they are a consequence of the angular momen-tum variations during resonance crossings without capture (Ferraz-Mello etal. in preparation). However, and independently on how they reached thiscondition, an important consequence of this type of con�guration is thatthey constitute a stabilizing mechanism for planetary orbits, especially ifthey have large eccentricities.Four extra-solar systems seem to satisfy the resonance condition: Gliese876, HD 82943, 55 Cnc and 47 UMa. The �rst two have planets withperiods in a 2/1 commensurability, the third in a 3/1, and the later closeto a 7/3. With regard to Gliese 876, numerical simulations (Laughlin andChambers 2001, Lee and Peale 2002) seem to indicate that these bodies



3are actually deeply trapped in an apsidal corotation (see section 6.1): Theyexhibit a libration of both resonant angles �i = 2�2� �1�$i, and also analignment of their major axes. Apsidal corotation seems to be the naturalissue of a capture in resonance in the case of two planets with initiallylow eccentricities (Ferraz-Mello et al. 2003; cf. this paper, section 6). Thealignment (or anti-alignment) of periapses has not yet been con�rmed inthe case of the other planetary systems above mentioned.The most conspicuous non-resonant system showing nearly aligned pe-riapses is � Andromedae. This system has been the object of many numer-ical and analytical studies (for references, see Michtchenko and Malhotra,2004). The orbit of the planets c and d in this system are such that thedistance between their periapses oscillates about zero with half-amplitude� 60 degrees and period � 7260 years.2. Hamiltonian Equations of the N-Planet ProblemThis section considers the Hamiltonian formulation of the problem of Nplanets orbiting a star in an arbitrary con�guration. This is a well-knownproblem in Celestial Mechanics. However, the vast majority of papers inCelestial Mechanics deal with the so-called restricted 3-body problems inwhich only 2 bodies have �nite masses. Therefore, some basic topics of thegeneral problem need to be remembered.BARYCENTRIC HAMILTONIAN EQUATIONSThe barycentric Hamiltonian equations of the N+1 body problem are ob-tained using the basic principles of Mechanics. Let mi (i = 0; 1; � � � ; N) betheir masses. If we denote as Xi the position vectors of the N+1 bodieswith respect to an inertial system, and �i = mi _Xi their linear momenta,these variables are canonical and the Hamiltonian of the system is nothingbut the sum of their kinetic and potential energies:~H = T + U = 12 NXi=0 �2imi �G NXi=0 NXj=i+1 mimj�ij (1)where G is the constant of gravitation and �ij = jXi �Xj j. This systemhas, however, 3(N + 1) degrees of freedom, that is, 6 equations more thanthe usual Laplace-Lagrange formulation of the heliocentric equations ofmotion. The system can be reduced to 3N degrees of freedom throughthe convenient use of the trivial conservation laws concerning the inertialmotion of the barycenter. There are two sets of variables used to reduceto 3N the number of degrees of freedom of the above system. The mostpopular reduction, due to Jacobi, is widely used in the study of the general



4
Figure 1. Main systems of coordinates: heliocentric (left), barycentric (center) andJacobi's (right).three-body problem and of planetary and stellar systems. A less popularreduction is due to Poincar�e; it was �rst published in 1897, but Poincar�ehimself did not use it because of di�culties related with the de�nition ofthe associated Keplerian elements (see Poincar�e, 1905; see next section).It appeared in the literature from times to times and started being morefrequently used around the eighties (Yuasa and Hori, 1979; Hori, 1985;Laskar, 1990). Hagihara (1970) says that it was discovered by Cauchy.2.1. POINCAR�E'S REDUCTION TO 3N DEGREES OF FREEDOMIn Poincar�e's reduction, the variables are the components of the heliocentricposition vectors Xi �X0 and the momenta are the same linear momenta�i of the barycentric formulation. Hence,ri = Xi �X0; pi = �i; (2)(i = 1; 2; � � � ; N). The given system has N+1 bodies and we thus need tointroduce one more pair of (vector) variables. Let them ber0 = X0; p0 = NXi=0�i: (3)A trivial calculation shows that the variables ri;pi (i = 0; 1; � � � ; N) arecanonical. Let us, now, write the Hamiltonian in terms of the new variables.The transformations of T and U give, respectively,T = 12 NXi=1 p2imi + 12 NXi=1 p2im0 + 12 p20m0 � NXi=1 p0 � pim0 + NXi=1 NXj=i+1 pi � pjm0 (4)and U = �G NXi=1 m0miri � G NXi=1 NXj=i+1 mimj�ij (5)



5where pi = jpij and ri = jrij = j�0ij.The reduction of the system is immediate. We note, beforehand, thatthe variable r0 is ignorable. Consequently, p0 is a constant that, by con-struction, we set equal to zero. The resulting equations may be separatedinto two parts:A. The �rst pair of equations, corresponding to the subscript 0, is:_p0 = 0 _r0 = gradp0 ~H: (6)We note that the second of eqns. (6) gives_r0 = p0m0 � NXi=1 pim0 : (7)B. The canonical equations in the variables ri; pi; (i 6= 0) are given bythe reduced HamiltonianH = ~H � 12 p20m0 + NXi=1 p0 � pim0 : (8)This subsystem has 3N degrees of freedom and is separated from theprevious one, since p0 is constant. (We did assume p0 = 0.)The Hamiltonian of the reduced system is H = H0 +H1 whereH0 = NXi=1 12 p2i�i � �i�iri ! (9)H1 = i=NXi=1 j=NXj=i+1 �Gmimj�ij + pi � pjm0 ! (10)and �i = G(m0 +mi) �i = m0mim0 +mi : (11)We note that H0 is of the order of the planetary masses mi while H1 is oforder two with respect to these masses. Then H0 may be seen as the newexpression for the undisturbed energy while H1 is the potential energy ofthe interaction between the planets.It is worth noting that each termFi = 12 p2i�i � �i�iri (12)



6is the Hamiltonian of a two-body problem in which the mass-point mi ismoving around the mass point m0. In fact, from the Hamiltonian given byeqn. (12), it is easy to obtain the second-order di�erential equation�ri = ��i rir3i = �G(m0 +mi) rir3i : (13)One of the canonical equations spanned by Fi is_ri = pi�i : (14)This equation apparently contradicts the statements done after which ri isthe heliocentric radius vector and pi is the barycentric linear momentum.However, it only means that the variation of ri in the reference Keplerianmotion is not the actual relative velocity of the ith body but pi=�i. Thismeans that, at variance with other formulations, the Keplerian motionsde�ned by eqns. (12) are not tangent to the actual motions. To distinguishthem from \heliocentric osculating", when necessary, we will use the word\heliocentric canonical".2.2. ACTION-ANGLE VARIABLES. DELAUNAY ELEMENTSThe solution of H0 is a set of N Keplerian motions whose generic Hamilto-nian is Fi. The purpose of this and the forthcoming section is to obtain theKeplerian elements and the Delaunay variables corresponding to the rela-tive coordinates introduced before, which must be used when a canonicalperturbations theory is constructed using H0 as \unperturbed" approxi-mation. For that sake, we have to solve the corresponding Hamilton-Jacobiequation and construct the action-angle variables of the given problem. Weonly give here the more important steps characterizing the variables appear-ing in the de�nitions of their action-angle variables and in the associatedDelaunay elements. To do it, the study of the planar case is enough andpreferable since the rotations necessary when the spatial case is considered,although trivial, introduce many new equations. All conceptual questionsappear in the planar case and have the advantage of making the calcula-tions much easier and thus allow the crucial points to be clearly identi�ed.Once the conceptual problems are solved in the planar case, the usual three-dimensional equations can be easily adapted to give the elements we arelooking for. In the plane, the Hamiltonian is separable in polar coordinates.To introduce these variables, let us remember that, in the reference Keple-rian motion, p = � _r. (For the sake of simplicity, we omit the subscript i inthe forthcoming equations.) Thenp = � � _ra + r _ b� (15)



7where a;b are the right-handed set of unit vectors at r in the positivedirections of the increments of r;  . _r; _ are the time derivatives of r;  inthe reference Keplerian motion. The kinetic energy term is, then,T = �2 ( _r2 + r2 _ 2) (16)or, introducing the momenta pr = @T@ _r and p = @T@ _ , we obtainT = 12�  p2r + p2 r2 ! : (17)The potential energy term is given byU(r) = ���r (18)and the resulting Hamilton-Jacobi equation is the classical one of the two-body problem with � instead of m and � instead of G(M +m):F = 12�  p2r + p2 r2 !� ��r : (19)The solution of this equation is well known and does not need to bereproduced here with all details. This equation is separable into:pr =s2�(E + ��r )� C2r2 (20)p = C: (21)C;E are integration constants (E = F is the \energy" and C = r � p isthe \angular momentum"; the quotation marks are necessary because ofthe particular de�nitions of r and p in the considered formulation).The actions associated with the given Hamiltonian areJr = 12� I prdr J = 12� I p d (22)whose integrations giveJr = �C + ��s ��2E J = C: (23)The Delaunay actions are:L = Jr + J = �p�aG = J = �p�ap1� e2 (24)where a and e are two constants introduced in the integration giving theaction Jr :



8 � The mean distance (or semi-major axis)a def= ���2E (25)� The eccentricity e def= s1 + 2EC2�2�3 : (26)Since, in general, the planets do not move in the same plane, we have tointroduce the inclinations I of their planes of motion over a �xed referenceplane and add the third Delaunay action H = �p�ap1� e2 cos I . TheDelaunay angles `; ! =  � v (and 
) are obtained in the usual way.2.3. CANONICAL HELIOCENTRIC ELEMENTSFor each planet, we may transform �; �; r;p into the elements a; e; �;$using the same transformations used to de�ne the ordinary osculating he-liocentric elements aosc; eosc; �osc; !osc of the two-body problem as functionsof m;G(M +m); r; m _r. However, the equations giving the osculating helio-centric elements depend on m only through �. In order to use always thesame routines, the above equations may be transformed. We substitute, ineqns. (25) and (26), E and C by their de�nitions E = F and C = r � p.We obtain the well-known equationsa = �r2�� rw2 (27)e = s�1� ra�2 + (r:w)2�a (28)where we have used the velocity in the reference Keplerian motionw = p� ; (29)instead of the actual planetary velocity, and w = jwj.The Keplerian motion corresponding toH0 in Poincar�e's relative canon-ical coordinates may be obtained with the ordinary routines substitutingthe heliocentric velocities by w = m� V (30)where V is the absolute (i.e. barycentric) velocity.The angles are obtained with usual equations. In the planar problem, thetrue longitude (�) is given by the angle formed by the radius vector with the



9�rst axis of the reference system (to be obtained through arctan y=x wherex; y are the components of r). In the spatial problem, some rotations arenecessary beforehand. The anomalies may also be easily obtained, startingwith the eccentric anomaly (u), which is given byu = arctan�ra� r:wa� r� : (31)The true (v) and mean (`) anomalies are obtained by means of classical 2-body equations. The other angles to determine are the longitude of periapsis(! = �� v) and the mean longitude (� = `+ !).The elements of the reference Keplerian orbit at the time t are a; e; !; �.Since the parameter � is variable, it is convenient to substitute it by theso-called \mean longitude at the epoch" (�0), which is the value of � at astandard \epoch" t0: � = �0 + n(t � t0) (32)where n = q �a3 is the mean-motion in the reference orbit.2.4. THE CONSERVATION OF THE ANGULAR MOMENTUMIf the only forces acting on the N+1 bodies are their point-mass gravita-tional attractions, the angular momentum is conserved:L = NXi=0miXi � _Xi (33)Since PN0 miXi =PN0 mi _Xi = 0, the above equation givesL = NXi=1 ri � pi; (34)that is L = NXi=1 �iq�iai(1� e2i ) � ki (35)where ki are the unit vectors normal to the Keplerian planes. This is anexact conservation law. In this equation ai and ei are not the usual helio-centric osculating elements but the canonical heliocentric elements de�nedby equations (27) { (28) where wi are the absolute velocities corrected bythe factors mi=�i.The conservation law given by eqn. (34) is also true if Jacobian coordi-nates are used. However, the expressionbL = NXi=1miq�iai(1� e2i ):ki (36)



10where ai and ei are the heliocentric osculating elements (Keplerian elementsde�ned by eqns. (27) { (28) with the heliocentric velocities vi instead of wi)often found in the literature, is not a true conservation law. One may easilysee that: bL = L � NXi=1miX0 � _X0 (37)showing that the quantity bL has in fact a variation of order O(m2i ).2.5. TWO-BODY EXPANSIONSFor the sake of future calculations, let us recall some series expansions ofthe two-body problem. These expansions are helpful in the task of writingcomputer codes for automatic expansion of H1 and hold in all systems ofelements founded on unperturbed Keplerian motions.The �rst result to be recalled concerns the Fourier expansion of somefunctions of the radius vector and true anomaly. They are the convergentseries �ra�n cos (kf) = 1Xj=0(Xn;kj +Xn;k�j ) cos (j`) (38)�ra�n sin (kf) = 1Xj=0(Xn;kj �Xn;k�j ) sin (j`)where the superscript n may be either positive or negative. The coe�cientsXn;kj are the Hansen coe�cients (see Tisserand, 1960; Kaula, 1962). Hansencoe�cients are functions of the eccentricity. They may be developed intopower series of the eccentricities:Xn;kj = ejk�jj 1Xs=0 Y n;ks+u1 ;s+u2e2s (39)(u1 = max (0; j � k) and u2 = max (0; k� j)) where the numbers Y n;ks+u1 ;s+u2are the Newcomb operators. Newcomb operators obey to some simple re-currence relations, which allow them to be easily calculated for all valuesof the indices (see Brouwer & Clemence, 1961).Introducing eqn. (39) into eqn. (38), we obtain, after some algebra,�ra�n cos (kf) = 1Xi=0 1Xm=�1Bn;k;i;mei cos (m`) (40)�ra�n sin (kf) = 1Xi=0 1Xm=�1Cn;k;i;mei sin (m`)



11where Bn;k;i;m and Cn;k;i;m are constant coe�cients expressed as functionsof Newcomb operators. These coe�cients, �rst calculated by Leverrier, donot depend on the orbital parameters and may be calculated once for all.They have some interesting properties. The most important of them is thed'Alembert property: Bn;k;i;m = Cn;k;i;m = 0 when jmj < i or when jmj � iis odd.The latest expansions are power series in e and their convergence de-pend on the singularities of the analytic function u = u(e; `), which are atjej = 0:6627434 � � �. This is the convergence radius of the given series (seeWintner, 1941).3. Expansion of the Disturbing FunctionThe Hamiltonian equations in relative coordinates may be used to studythe planetary motions. In analytical studies, once introduced the new vari-ables, the next step is to write H1 in terms of the Keplerian elements. Awell-known approach to this problem is the classical Laplacian expansionof H1 into a Fourier series in the angles and a power series in the eccen-tricities, which introduces the functions of the semi-major axes known as\Laplace coe�cients". Another expansion sometimes found in the litera-ture uses the expansion of 1� in Legendre polynomials of the ratio of thedistances of the two planets to the central star. These expansions workwell in their domains of validity. The Laplacian expansion is a good ap-proximation if the orbital eccentricities are small. However, the radius ofconvergence of the expansion decreases (see Ferraz-Mello, 1994) with theincrease of the ratio � of the two semi-major axes. For � � 0:6 the seriesis no longer convergent for eccentricities as small as � 0:2. The expansionswith Legendre polynomials are more stringent: they may only be used inthe study of well hierarchized systems where the ratio of the distances ofthe perturbed and perturbing bodies to the central body remain small for-ever. This is the case of the lunar theory, in which the motion of the Moonaround the Earth is disturbed by the Sun. Otherwise, the convergence ofthe expansion in Legendre polynomials is very slow and its use in planetaryproblems accounts for many wrong results. We present, in this lecture, animprovement of the technique �rst developed by Beaug�e (1996). This \ex-pansion" is valid in large domains of the phase space excluding a domainaround the singularities associated to collisions between the two bodies. InBeaug�e's approximation, the number of terms necessary to represent H1depends on the magnitude of H1 in the domain to be studied: Near theminimum of jH1j, a few terms are enough to have a good representation.This number increases quickly as we approach orbits that may come closeto a collision. At variance with Beaug�e's early expansion, the present one



12(Beaug�e & Michtchenko, 2003) has no explicit restrictions with regard toeccentricities and inclinations.3.1. BEAUG�E'S APPROXIMATION. THE PARAMETER �The big problem in the expansion of H1 comes from the terms having � indenominator. In heliocentric coordinates, we can write:1� = (r21 + r22 � 2r1r2 cosS)�1=2 (41)where S is the angle between both bodies as seen from the central mass.Introducing the ratio � = r1=r2, eqn. (41) becomesr2� = (1 + �2 � 2� cosS)�1=2: (42)Instead of expanding this function in Fourier series of S (Laplace approach)or power series of � (Legendre polynomials), a best-�t approach is used. Wewrite r2� = (1 + x)�1=2: (43)where x = �2 � 2� cosS (44)and represent the function (1 + x)�1=2 by a polynomial of order N in x:(1 + x)�1=2 ' NXn=0 bnxn (45)whose coe�cients bn are determined numerically through a linear regres-sion.The variable x is a measure of the proximity of the initial condition tothe singularity in 1� . It is equal to �1 at the singularity, and takes valueslarger than this for every point (�; cosS) away from the collision curve (see�g. 3). We note that the values of � and S are not separately signi�cant;only the distance from the singularity is important.The numerical �t is performed using values of x > �1 + �, where � isa positive parameter close to zero. The smaller its value, the better theapproximation to the real function near the singularity. However, when � issmall, the number N of terms to be considered in the representation of (1+x)�1=2 to guarantee an adequate precision for all values of the independentvariable is necessarily large.Figure 2 shows the relative error of (45) for N = 30 and two values of�. We can see that for most of the interval of x, the �t with � = 0:1 yields



13
-1 -0.8 -0.6 -0.4 -0.2 0

x

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

er
ro

rFigure 2. Relative error of the approximation of 1=p1 + x given by eqn. (45) in functionof x, for two values of �. The continuous line shows the case � = 0:1 and the broken lineshows � = 0:01. In both examples, N = 30.a much higher precision than the �t with � = 0:01. In the �t with � = 0:1,the errors are of the order of 10�6, that is, about 3 orders of magnitudelower than in the other case. Conversely, as x! �1, the �t with � = 0:01is more precise. Larger values of N will diminish the error in both cases,but at the cost of increasing the number of terms enormously.In the general case, the motion of the two bodies is unconstrained andthe distance between the two planets is minimum in a symmetric conjunc-tion with the outer planet at the periapsis and the inner planet at apoapsis.In this case, we have to choose � < (1� �)2 where � = �(1+ e1)(1� e2)�1.Beaug�e's technique no longer requires that the ratio of the distances of thetwo planets is small, but it requires � < 1. However, when the planets arein resonant motion, the method is valid even for crossing orbits becausethe resonance does not allow the planets to come close one to another. Thelimits of x when the motion of the two planets is constrained by a 2:1 com-mensurability (� = 0:63) are shown in �gure 3 in the particular case wheree2 = 0.The geometry of the curves in �g. 3 follows very closely (but not iden-tically) the topology of the phase portrait of the 2:1 resonant restrictedthree-body problem averaged over short-period terms. The maximum valueof xmin lies at e1 = 0:8; �1 = 0 (on the horizontal axis) and correspondsto the minimum of jH1j. This point is very close to the corotation station-ary solution of the 2:1 asteroidal resonance (e1 = 0:73 when e2 ! 0; seeFerraz-Mello et al., 1993). Similarly, the minimum value of xmin (equal to�1) corresponds to the singularities of H1. There is no direct relationshipbetween the eccentricity and xmin. An orbit with a large eccentricity nearthe corotation center may have a larger value of xmin, while an almost cir-
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Figure 3. Limits of validity of Beaug�e's approximations for planets in the 2:1 reso-nance with e2 = 0 for di�erent values of �. The thick black line on the left-hand sideis the locus of the points where xmin = �1 (collision curve). The non-labeled curvesadjacent to it correspond to � = 0:001. Horizontal axis: e1 cos �1; Vertical axis: e1 sin �1:(�1 = 2�2 � �1 �$1).cular orbit with a lower eccentricity may reach values very close to the limitx = �1. It is worth recalling that several extra-solar planet pairs observedin resonant con�guration lie near corotation centers where xmin is large andgood Beaug�e's approximations may be obtained with small N .3.2. THE DIRECT PARTTo transform the above approximation into a function having the formneeded in a theory, many transformations have to be done. Introducing theexplicit expression for x into eqn. (45), it becomesr2� ' NXk=0 nXj=0 ck(�2)j � kj ��2k�j cosj S (46)where the ck are constant coe�cients, easily obtainable in terms of the bk.From now on, we will restrict ourselves to coplanar orbits. Changingfrom powers of the cosines to multiples of the argument, and introducingthe planar approximation S = f1 � f2 +�$, we can rewrite it as:a2� ' NXk=0N�kXi=0 2Ak;i�m�r1a1�m�r2a2��m�1 cosk(f1 � f2 +�$) (47)where m = 2i+ k.



15At last, introducing eqn. (40) into the expression of the direct part ofthe disturbing function, and reordering the terms, we get:a2� ' 1Xj;k=0 1Xm;n=�1 NXl=0 N�lXi=0 Al;iD2i+l;j;k;m;n�2i+lei1ej2 cos (m`1 � n`2 + l�$)(48)where the coe�cients D2i+l;j;k;m;n are given by:D2i+l;j;k;m;n = 12
m
n (B2i+l;l;j;jmj + sign(m)C2i+l;l;j;jmj)� (49)(B�2i�l�1;l;k;jnj + sign(n)C�2i�l�1;l;k;jnj)and 
m is a simple bi-valuated function de�ned as:
m = � 1=2 if m = 01 if m > 0: (50)Eqn. (48) multiplied by the factor Gm1m2a2 gives the term of the directpart corresponding to the given pair of planets.3.3. THE INDIRECT PARTIn Poincar�e heliocentric relative coordinates, the indirect part of H1 is (seeeqn. (10)): T1 = NXi=1 NXj=i+1 pipjm0 : (51)The linear momenta pi may be obtained from the derivatives of the vectorradii ri(t); rj(t) in the Keplerian reference orbit (see eqn. (14)). Then,T1 = NXi=1 NXj=i+1 �i�j _ri(t)_rj(t)m0 (52)or T1 = �1�2m0 n1n2�@x1@`1 @x2@`2 + @y1@`1 @y2@`2 � (53)where `i are the mean anomalies and ni the mean motions. xi and yi are thecomponents of ri and are given by xi = ri cos(fi +$i) and yi = ri sin(fi +$i).In the sequence, we substitute the mean motions by the values issuedfrom Kepler's third law and put into evidence the same factor used at theend of the previous section. HenceT1 = Gm1m2a2 A��1=2� @@`1�x1a1� @@`2�x2a2�+ @@`1�y1a1� @@`2�y2a2��: (54)



16A = q �1�2m1m2 � 1 � m1+m22m0 is taken hereafter equal to 1, introducing anerror of third order in the planetary masses. Using the expansions given insection 2.5, there followsx1a1 = 1Xi=0 1Xj=�1 Ii;jei cos (j`1 +$1) (55)y1a1 = 1Xi=0 1Xj=�1 Ii;jei sin (j`1 +$1)where Ii;j = 12
j�B1;1;i;jjj + sign(j)C1;1;i;jjj�: (56)After the di�erentiation of these equations with respect to the mean anoma-lies, and substitution in T1, we obtainT1 = Gm1m2a2�1=2 1Xj;k=0 1Xm;n=�1mnIj;mIk;nej1ek2 cos (m`1 � n`2 + �$): (57)Notice that, except for the dependence on �, this series is formally similarto that giving the direct part of F1. To complete the similarity, we cansubstitute the factor ��1=2 by a power series expansion in the neighborhoodof the exact resonant value and write it as��1=2 = 2NXi=0Ai�i (58)where Ai are constant coe�cients. With this change, T1 now reads:T1 = Gm1m2a2 2NXi=0 1Xj;k=0 1Xm;n=�1AimnIj;mIk;n�iej1ek2 cos (m`1 � n`2 + �$);(59)which is the �nal expression for the indirect part of the disturbing potential.3.4. THE DISTURBING FUNCTIONSince both parts are formally similar, we can unify both expressions andobtain a single series for the disturbing function of the planetary three-bodyproblem in heliocentric relative coordinates:H1 = Gm1m2a2 1Xj;k=0 1Xm;n=�1 NXl=0 2NXi=0Ri;j;k;m;n;l�iej1ek2 cos (m`1 � n`2 + l�$)(60)



17where � = a1a2 andRi;j;k;m;n;l = Al;(i�l)=2Di;j;k;m;n � �l;0AimnIj;mIk;n; (61)�l;0 is Kronecker's delta function. Note that these coe�cients are constantfor all initial conditions, and therefore need only be determined once. (Formore details, see Beaug�e & Michtchenko, 2003.)It is important to note that each term in H1 depends on the meananomalies `i and on the di�erence of the periapses longitudes �$. Thismeans that if the arguments are written in terms of longitudes �i; $i only,they become �1�1 + �2�2 + �3$1 + �4$2 with P �i = 0. That is, H1 isinvariant to rotations of the reference frame.4. Secular Dynamics of 2 PlanetsThe study of the secular dynamics is the study of the secular part of theHamiltonian, obtained after an averaging over the mean longitudes. Wewill restrict ourselves in this text to the case of only two planets. To the�rst-order of the masses, the averaged Hamiltonian is the mean value of H:< H > = 14�2 Z 2�0 Z 2�0 Hd�1d�2 (62)or < H > = � 2Xi=1 �2i �3i2L2i � Rsec(Li; Ii;�$)where we have introduced the Delaunay variables Li; Ii = Li � Gi de�nedin section 2.2. Because of the invariance of H1 with respect to rotations,once the �i are averaged out, only terms with arguments �3$1+�4$2 with�3 = ��4 can remain in Rsec. That is, < H > depends on only one angle,the di�erence �$. This means that the averaged equations have threeignorable angles, that is, three �rst integrals (conservation laws). They areL1 = const:L2 = const:K2 = I1 + I2 = const:The third of these integrals,K2 = I1 + I2 = L1(1�q1� e21) + L2(1�q1� e22): (63)was called Angular Momentum De�cit by Laskar (2000). It is a combina-tion of the conservation of the angular momentum (G1+G2=const., in the
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19The conservation law is also found in N-planet systems. In the coplanarcase, the angular momentum de�cit isKN = I1 + I2 + � � �+ IN = NX1 Li(1�q1� e2i ):It is worth emphasizing that this conservation law of the averaged systemis not a rigorous one as the Angular Momentum conservation discussed insection 2.4. It is approximated and valid strictly only as far as the hypothe-ses done to average the system are satis�ed and the semi-major axes remainapproximately constant.The equations of motion derived from < H > are_I1 = �@ < H >@�$ ; � _$ = @ < H >@I1 : (64)This system has only one degree of freedom and is integrable.4.1. THE MODE I AND MODE II PERIODIC MOTIONSThe exact solution of eqns. (64) is not easy to obtain analytically, but someinsight can be gained by examining their equilibrium points (which cor-respond to periodic solutions of the two-degrees-of-freedom Hamiltonian< H >). They are de�ned by_I1 = 0; � _$ = 0: (65)For non-singular I1 (I1 6= 0 and I1 6= K2), we have two trivial solutions:�$ = 0 and �$ = �. These solutions are often referred as Mode I (�$ =0) and Mode II (�$ = �). In mode I, the lines of apses of the two planetsare aligned having the periapses on the same side; In mode II, the situationis similar but the two periapses are in opposite directions (the periapses areanti-aligned). Ordinary motions are oscillations around these �xed points.Solutions of the above equations corresponding to the masses, semi-major axes and energy level of the planets c and d of �And are shown inFig. 5. They are presented in two di�erent planes. One in which the coor-dinates are e1 cos�$; e1 sin �$ (e1 is the eccentricity of �And c) and an-other, not independent, in which the coordinates are e2 cos�$; e2 sin �$(e2 is the eccentricity of �And d).On each �gure, we can see the two �xed points above called Mode I andMode II. In the left-hand phase plane, corresponding to the eccentricity ofplanet c, motions around the Mode I �xed point dominate; the Mode II�xed point lies near the left-hand boundary of the energy surface. In theright-hand �gure, corresponding to planet d's eccentricity, the situation is
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ow is dominated by motions around the Mode II �xedpoint which lies near the center. (For a discussion on the periodic orbitscorresponding to the �xed points, see Michtchenko & Ferraz-Mello, 2001;Michtchenko and Malhotra, 2004.)It is important to note that even though the motion of angle �$ maybe either an oscillation (about 0 or 180o) or a circulation, there is no sepa-ratrix associated with an unstable in�nite-period solution separating thesemotions. To better understand this feature, we plot by dashed lines twospecial solutions on each �gure. These solutions are associated with thesingularities in eqns. (65), which take place at I1 = 0 and I1 = K2 (that is,I2 = 0). One of these solutions, presented by the curve S1, was calculatedwith initial condition I1 ' 0 and is seen as a smooth curve passing throughthe origin on the left-hand side �gure. At variance, S2, calculated with ini-tial condition I2 ' 0 is seen as the `false' separatrix between the domains ofthe motion around the two di�erent �xed points. An analogous situation isseen in the right-hand-side �gure where, now, S2 is a smooth curve passingthrough the origin and S1 separates the domains of the motion around thetwo di�erent �xed points. The motion along these separatrix-like curves issuch that, when the representative point in one plane passes through theorigin, in the other plane it is at the boundary of the separatrix-like curveand jumps from one boundary to another. However, such jump does notmean that the motion is passing through a singularity. It is just the resultof the topological inadequacy of the plane to represent these solutions; they



21would be better drawn over a sphere (see Pauwels, 1983).Figure 5 shows some important features of the secular motion of twoplanets. In solutions close to Mode I (the right-hand side �xed point), thesecular angle �$ oscillates about 0 and the planet eccentricities undergosmall oscillations about the value corresponding to Mode I equilibrium. Ina similar way, the solutions close to Mode II (the left-hand side �xed point),the secular angle �$ oscillates about 180o. At mid-way from Mode I toMode II, there is a large region of the phase space, corresponding to solu-tions where the motion of the secular angle �$ is a prograde circulation.The motions around Mode I and Mode II are two opposite stable waysof the planetary system to be aligned. In Mode II, the closest approachesbetween the planets occur when �And c is at apoapsis and �And d atperiapsis, simultaneously. This situation can never occur in Mode I.Fig. 5 is akin to surfaces of section of the two-degrees-of-freedom system.The curves in each plane are de�ned by initial conditions on the planeplus one condition out of the plane (the other eccentricity, or, equivalently,K2), which is adjusted in such a way that all curves correspond to thesame energy. Therefore, it is not a phase portrait. (Phase portraits of one-degree-of-freedom Hamiltonian are sets of trajectories of di�erent energies.See the phase portraits of < H > in Pauwels, 1983.) This choice makes�g. 5 more suitable for comparison to similar plots obtained for 2-planetresonant systems (Michtchenko & Ferraz-Mello, 2001; Callegari Jr. et al.,2004).5. Resonant DynamicsIn the previous section, the Hamiltonian was averaged over the two meanlongitudes �1 and �2. This procedure is not valid if the two planets havecommensurable periods, since, in this case, �1 and �2 are no longer inde-pendent: p+ qp resonance() T2T1 ' p+ qpThe averaging over the two longitudes will kill all terms depending on thelongitudes including those depending on the critical combination(p+ q)�2 � p�1:However, these terms play a major role in the dynamics of the two planetsand should remain in < H >. To preserve them, we de�ne, before theaveraging, the following set of planar canonical variables:



22 �1 J1 = L1 + s(I1 + I2)�2 J2 = L2 � (1 + s)(I1 + I2)(1 + s)�2 � s�1 �$1 = �1 I1 = L1 � G1(1 + s)�2 � s�1 �$2 = �2 I2 = L2 � G2 (66)where s = p=q. The two angular variables �i are the critical angles. Withthe angles thus introduced, the generic argument m`1 � n`2 + l�$ of thedisturbing function becomes (m� l)�1�(n� l)�2+[m(1+s)�ns](�1��2).Note that, because of the invariance of H1 to rotations, the mean longitudeonly appears through the mean synodic longitude �1 � �2. It is easy tosee that the \action" conjugate to the missing angle is the total angularmomentum L = G1+G2 = (L1 � I1) + (L2� I2) = J1 + J2. The averagingover the mean longitudes (or over the mean synodic longitude) can, now,be done and the critical angles will be preserved inside �1 and �2.After the averaging,< H > = � 2Xi=1 �2i �3i2L2i � Rreswhere Rres = Gm1m2a2 Xi;j;k;m0;n0 C[���]�iej1ek2 cos[m0q�1 + n0(�2 � �1)]The momenta whose conjugate angles no longer appear in < H > are�rst integrals (only 2, now): J1 = const:J2 = const: (67)J1 + J2 = G1 + G2 is the Angular Momentum, whose conservation in thesystem before the averaging was discussed. It is worth emphasizing the factthat the Li (i.e. the semi-major axes) are no longer invariant.The two integrals above may be combined to give(1 + s)L1 + sL2 = const: (68)(Sessin and Ferraz-Mello, 1984). This integral of the resonant dynamicsmeans that a1 and a2 vary in anti-phase. When one of the semi-axis in-creases, the other necessarily decreases.The above variables may also be combined to give:AMD = I1 + I2 = const:+ L1s : (69)



23The AMD also is no longer invariant, but its variation is small and thus lim-itations of the eccentricities similar to that observed in the secular motion(but di�erent) exist.5.1. RESONANT STATIONARY SOLUTIONS. APSIDAL COROTATION.The averaged system is, now, an irreducible two-degrees-of-freedom system.An important feature of this system is the existence of stationary solutions(Beaug�e et al., 2003; Ferraz-Mello et al. 2003; Lee and Peale, 2003). Thesesolutions are de�ned by the equationsdIidt = @ < H >@�i = @Rres@�i = 0; d�idt = @ < H >@Ii = 0: (70)They are such that Ii and �i are constant (except for the short periodterms eliminated by the averaging and for contributions of higher orders).Constant Ii's mean semi-major axes and eccentricities constant in thesesolutions; �1 and �2 constant mean that �$ = �1��2 is constant, that is,the periapses are moving with same velocities so that their mutual separa-tion do not vary. This frozen relative state in resonant systems is known asapsidal corotation.Equations (70) may be studied separately. The �rst equation says thatthe stationary solutions lie at the extrema of the function Rres with respectto the variables �i. These extrema depend only on the ratio of the massesof the two planets and on the eccentricities (constants in the stationarysolution). The factor Gm1m2a2 does not a�ect the results.Figures 6 are contour plots of the function Rres for given e1; e2 and �(taken at � = a1=a2 ' 0:63, value corresponding to the resonance 2/1). Forthe sake of an easier interpretation, we used the angles �1;�$ = �2 � �1,instead of �1; �2. The extrema seen in these �gures may correspond tostable stationary solutions or not. < H > is a function of 4 variables andonly 2 variables are considered in these �gures. Therefore, what appearsas an extremum in this picture is not necessarily one extremum in thefull phase space. The stable solutions considered in this paper are thosecorresponding to the centers in the white areas. However, one should beaware that they are not the only stable stationary solutions in this problem(see Hadjidemetriou and Psychoyos, 2003).The two �rst plots correspond to low e1 (e1 = 0:02). For small e2(e2 = 0:02) the extremum corresponding to stable solutions is such that�$ = � (�1 = 0; �2 = �). In this solution, the periapses are anti-aligned.When e2 is larger (e2 = 0:04 in the right-hand plot), the extremum seen inthe left-hand plot becomes a saddle point and a bifurcation gives rise to twoextrema symmetric with respect to the saddle. These extrema correspond
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Figure 6. Contour plots of Rres in the 2/1 resonance for 4 given pairs of eccentricityvalues. Abcissas: �1 = 2�2 � �1 �$1; Ordinates: �$ = $1 �$2.to asymmetric stationary solutions where �$ = �2 � �1 remains constantbut with a value not necessarily equal to zero or � or commensurable with�. The second row of plots correspond to high e1 (e1 = 0:2). For smalle2 (e2 = 0:01) the extremum corresponding to stable solutions is suchthat �$ = 0 (�1 = �2 = 0). In this solution, the periapses are aligned.When e2 is larger (e2 = 0:05 in the right-hand plot), the same phenomenonseen in the �rst row occurs: the extremum seen for low e2 gives rise to twoextrema symmetric with respect to the saddle. As in the previous case, theseextrema correspond to asymmetric stationary solutions. These asymmetricsolutions, depending on the eccentricities, may be found on a large set of
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Figure 8. Loci of the stationary corotation solutions of the 2/1 resonance for several massratios m2=m1. Top �gures correspond to the symmetric solutions of the two left-handside plots in �g. 6. The points corresponding to two early determinations of the elementsof Gliese 876 are shown in one of these plots. The bottom �gure corresponds to theasymmetric solutions of the two right-hand side plots in �g. 6. The line across thesecurves shows the values of the eccentricities for which 0:63(1+e1) = (1�e2). In all panels,the thick line shows the boundary between the domains of symmetric and asymmetricsolutions.has the form A1m1 + A2m2 = 0, whose solutions do not depend on themasses themselves but only on the mass ratiom2=m1. This is not a rigorousstatement. In fact, the semi-major axes and eccentricities are functions ofIi that include also the factor m0 +mi. This means that A1 and A2 areindependent on the masses only in a �rst approximation. Even if theirvariation with the masses is small for the range of masses of the consideredplanets, this variation exists and will a�ect the solutions in case of largeratios mi=m0. Beaug�e et al. (2003) have shown that the stationary orbitsobtained in this section exist for planet masses less than � 10�2 of the starmass.The above equations were used to �nd apsidal corotation solutions in the



27case of planets in 2/1 and 3/1 mean-motion resonances. The relationshipbetween eccentricities and mass ratios in some of these solutions are shownin �g. 8. The top panels correspond to symmetric solutions. In the left-hand side panel, the periapses are anti-aligned. This is the case of the twoinnermost Galilean satellites of Jupiter: Io and Europa. In the right-handside panel, the periapses are aligned. This is the case of the two planetsin orbit around the star Gliese 876. The thick lines in the two top panelsshow the boundary above which symmetric solutions no longer exist. Atthe thick line, the solutions bifurcate into pairs of asymmetric solutions.The relationship between eccentricities and mass ratios in the domain ofasymmetric solutions is shown in the bottom panel. It is worth noting thatthe mass ratio m1=m2 in the bottom panel is always smaller than a limitclose to 1.0. This situation is often called \exterior case" since it correspondsto have the smaller body in an orbit exterior to that of the more massive one.Asymmetric apsidal corotations are known in the exterior asteroidal case(Beaug�e, 1994). Asymmetric periodic solutions in the restricted three-bodyproblem were �rst shown to exist by Message (1958). We may also mentiona similar behavior, in deep resonance, of the Laplacian critical angle of theGalilean satellites of Jupiter: �1 � 3�2 + 2�3 (Greenberg, 1987).6. Capture into ResonanceIn this section, we present the results of a series of numerical simulationsof the dynamical evolution of �ctitious pairs of planets under the action ofa non-conservative perturbation that adds angular momentum and energyto the orbit of the innermost planet. The planets are small (some 10�5of the central body mass) and the mass ratio is m2=m1 = 0:538 (i.e., theso-called exterior case). The actual calculations were done with satellitesinstead of planets, but the physical nature of the system does not matter inthe following discussion. The physics and used methodology are in (Ferraz-Mello et al., 2003).The initial distances to the star are just behind the 2/1 resonance:� = a1=a2 = 0:612. When the semi-major axis ofm1 increases, a1 increasesand the mean-motion resonance (� = 0:63) between m1 and m2 is reached.Capture then can take place. The probability of capture depends on the rateof variation of a1 { if the rate is high, the orbit crosses the resonance with-out capture, one phenomenon very well studied in the case of one masslessparticle. Other factors in
uencing the probability of capture are the or-bital eccentricities { capture is more probable when orbital eccentricitiesare small (Dermott et al., 1988; Gomes, 1995). In our calculations, initialeccentricities were lower than 0.001 and the physical parameters were ad-justed to have slow resonance approximation. Figure 9 shows the evolution
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