Stellar activity and rotation of Kepler-63

Yuri Netto
Advisor: Dra. Adriana Valio
Co-Advisor: Dr. Nuccio Lanza
CRAAM - Presbyterian Mackenzie University, Brazil
Osservatorio Astrofisico di Catania, Italy

6 September 2019

Sun and others stars

- Strong magnetic fields that inhibits the transference of energy from the convective zone.
- Are colder than the surrounding photosphere.
- Umbra - 4200 K
- Penumbra - 5000 K
- Number of sunspots is not constant in time

Sun and others stars

Solar activity cycle

- In 1843 Schwabe noticed a periodic variation in the average number of sunspots

Sun and others star

Differential rotation

- Differential rotation: fundamental for the solar dynamo
- Do not rotate as a solid sphere.
- Differential rotation: 24 days (equator) e 31 days (poles)
- Responsible for active regions

Copyright © Addson Wostey

Sun and others star

Starspots

- Other stars also exhibit activity and have spots
- Basically 3 methods to study starspots:
- Zeeman-Doppler imaging
- Planetary transit (Silva, 2003)
- Light curve rotational modulation (Lanza, Bonomo, Rodonò, 2007)

Methodology

Methodology

Planetary transit method

- Model created by Silva (2003)
- Planetary transit:
- Star: Sun image or synthesized image of a star with limb-darkening
- Planet: dark disk R_{p} / R_{s}
- Circular orbit, with semi-major axis a/ R_{s} and period $P_{\text {orb }}$

Methodology

Starspots characterization

Physical characteristics of the spots: size, intensity e location.

- Properties of the fitted spot:
- Size: radius, in units of the radius of the planet, R_{p}
- Intensity: fraction of the maximum brightness intensity of the star that can be converted to temperature
- Position: longitude and latitude

$$
T_{m}=\frac{h \nu}{K_{B}}\left[\ln \left(1+\frac{\mathrm{e}^{\frac{h \nu}{\mathrm{e}_{B} T_{e}}}-1}{f_{i}}\right)\right]^{-1}
$$

Methodology

Spotmap - Earth referential frame

Methodology

Rotational period of the star at transit latitude

- To determine the rotational period at a given latitude, it is necessary to detect the same spot in several transits. (Valio, 2013)

Methodology

Rotational period of the star at transit latitude

$$
\begin{aligned}
& \beta_{\text {rot }}=\beta_{\text {topo }}-\left(360^{\circ}\right) \frac{n P_{\text {orb }}}{\rho_{\text {star }}} \\
& \beta_{\text {rot }}=\text { rotational longitude }(\text { star }) \\
& \beta_{\text {topo }}=\text { topocentric longitude }(\text { Earth })
\end{aligned}
$$

Methodology

Rotational period of the star at transit latitude

Methodology

Spotmap - Referential frame rotation with the star
Spotmap: CoRoT-2

Methodology

- Solar rotation profile:
$\Omega=A-B \sin ^{2}(\alpha)$ where $P=2 \pi / \Omega$

Mean rotation period $\rightarrow \Omega_{0}=\frac{1}{\left(\alpha_{2}-\alpha_{1}\right)} \int_{\alpha_{1}}^{\alpha_{2}}\left(A-B \sin ^{2} \alpha\right) d \alpha$
Rotation period at the latitude $\alpha_{1} \rightarrow \Omega_{1}=A-B \sin ^{2}\left(\alpha_{1}\right)$

Methodology

- Differential rotation measured in radian per day $(\mathrm{rd} / \mathrm{d})$, is given by $\Delta \Omega=\Omega_{\text {eq }}-\Omega_{\text {pole }}$
- Relative differential rotation, in \%, is given by $\Delta \Omega / \Omega_{0}$
- Solar rotation profile:
$\Omega=A-B \sin ^{2}(\alpha)$ where $P=2 \pi / \Omega$

$$
\begin{aligned}
& \Delta \Omega=\Omega_{\text {eq }}-\Omega_{\text {pole }} \\
& \Omega_{\text {eq }}=\Omega(\text { lat }=0)=A \\
& \Omega_{\text {pole }}=\Omega\left(\text { lat }=90^{\circ}\right)=A-B
\end{aligned}
$$

Methodology

- Q: Ratio between areas of faculae and spot
- Q is obtained by a model developed by Lanza (2003):
- Rotational modulation fit: 3 active region (spots and faculae)
- Few free parameters
- Determination of Δt_{f}, longer time interval that the active regions remain stable
- Q is determined by minimizing χ^{2}

Methodology

- Model by Lanza, Bonomo, Rodonò (2007)
- Maximum entropy model:
- Based on continuous active region distributions
- Subdivided into 200 surface elements that contain unperturbed photosphere, dark spots, and faculae
- Filling factor: spot area $\left(f_{k}\right)$, faculae area $\left(Q f_{k}\right)$ e quiet photosphere $\left(1-(Q+1) f_{k}\right)$

Methodology

$\Omega=$ angular velocity
$\theta=$ colatitude
$\phi=$ longitude

Methodology

- Light curve is fitted by changing the filling factor (f)
- Q is kept constant
- $Z=\chi^{2}(f)-\lambda S(f)$
- $\lambda=0=$ unstable

Methodology

Maximum Entropy Model (MEM)

- Optimal value of λ :
- mean of the residuals $\left|\mu_{\text {reg }}\right|=\sigma_{0} / \sqrt{N}$, where σ_{0} is the standard deviation of the residuals of the unregularized model $(\lambda=0)$.

Star: Kepler-63

Parameter	Unit	Value
	Star	
Effective Temperature, $T_{\text {eff }}$	$[\mathrm{K}]$	$5576(\pm 50)$
Mass, M_{\star}	$[M \odot]$	$0.984(-0.04,+0.035)$
Radius, R_{\star}	$[R \odot]$	$0.901(-0.022,+0.027)$
Rotation Period, $P_{\text {star }}$	$[$ days $]$	$5.400(\pm 0.009)$
Age	$[M y r s]$	$210(\pm 45)$
Sky-projected Stellar Obliquity	$[\mathrm{deg}]$	$-110(-14,+22)$
Inclination of rotation axis	$[\mathrm{deg}]$	$138(\pm 7)$
	Planet	
Mass, M_{p}	$\left[M_{J u p}\right]$	0.4
Radius, R_{p}	R_{p} / R_{\star}	0.0662
Orbital Period	$[d a y s]$	$9.4341505\left(\pm 1 \times 10^{-6}\right)$
Semi major axis	a / R_{\star}	19.35
Orbital inclination angle, i	$[d e g]$	$87.806(-0.019,+0.018)$

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza
PMU e OACT

Stellar activity and rotation of Kepler-63

Application of models

Kepler-63 - Planetary transit method

- 150 transits
- Curve without spot: 10 deepest transits without any visible spot signature
- Final fit: AMOEBA
- 297 spots

Almost polar orbit \rightarrow rotation matrix

Application of models

Kepler-63 - Planetary transit method

Application of models

Kepler-63 - MEM

Kepler-63 light curve with the fit

- mean of the residuals $\mu_{\text {reg }}=-4.972 \times 10^{-6} \simeq-\sigma_{B L} / \sqrt{N}$
- standard deviation of the residuals $\sigma_{\text {reg }}=1.401 \times 10^{-4}$

Results

Kepler-63 - Planetary transit method

Butterfly diagram

297 spots

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza

Parameter	Unit	Average
Radius	$\left(R_{p}\right)$	0.65 ± 0.13
Radius	(Mm)	26 ± 5
Intensity	$\left(I_{c}\right)$	0.43 ± 0.15
Temperature	(K)	4700 ± 300

Results

Kepler-63 - MEM

- active regions migration: 5000-5100 5700-5900 6100-6200
- migration rate $\sim 1^{\circ} /$ day
- $\Delta \Omega / \bar{\Omega}=1.5 \%$

Results

Kepler-63 - MEM

Conclusion

- Transit method:

297 spots
It is not possible to calculate a differential rotation
Butterfly diagram

Parameter	Unit	Average
Radius	$\left(R_{p}\right)$	0.65 ± 0.13
Radius	(Mm)	26 ± 5
Intensity	$\left(I_{c}\right)$	0.43 ± 0.15
Temperature	(K)	4700 ± 300

- MEM:

Active longitude at $\sim 100^{\circ}$ Lower limit for $\Delta \Omega / \bar{\Omega}=$ 1.5\%

- Comparison between the maps was not possible

Conclusion

Star	Kepler-17	Kepler-63	Kepler-71	CoRoT-2	Sun
Mass $\left(M_{\text {Sun }}\right)$	1.16	0.984	0.997	0.97	1.0
Radius $\left(R_{\text {Sun }}\right)$	1,05	0.901	0.887	0.902	1.0
$T_{\text {eff }}(\mathrm{K})$	5780	5576	5540	5575	5778
Age $($ Gyr $)$	1.78	0.2	$2.5-4.0$	$0.13-0.5$	4.6
Dif. Rot. $(r d / d)$	0.041	0.081	0.005	0.042	0.05
Relat. dif. rot. $(\%)$	8.0	1.5	<2	3.04	22.1
Planet	Kepler-17b	Kepler-63b	Kepler-71b	CoRoT-2b	
Radius $\left(R_{\text {star }}\right)$	0.138	0.0662	0.1358	0.172	
a $\left(R_{\text {star }}\right)$	5.738	19.35	12.186	6.7	
Spots					
Radius $(M m)$	49 ± 10	26 ± 5	51 ± 26	55 ± 19	12 ± 10
$T_{\text {spot }}(\mathrm{K})$	5100 ± 300	4700 ± 300	4800 ± 500	4600 ± 700	4800 ± 400

- Kepler-63 and CoRoT-2 have slightly cooler spots than evolved stars
- Discarding Kepler-71, the younger the star is, the lower the relative differential rotation it presents.

Thanks!

Application of the models

Kepler-63 - Planetary transit model

- Rotation matrix A around the x axis $\rightarrow\left(x, y^{\prime}, z^{\prime}\right)$

$$
\begin{aligned}
& x_{1}=R_{\star} \times \cos (\text { lat }) \cos (\text { long }) \\
& y_{1}=R_{\star} \times \cos (\text { lat }) \sin (\text { long }) \\
& z_{1}=R_{\star} \times \sin (\text { lat })
\end{aligned}
$$

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\psi) & -\sin (\psi) \\
0 & \sin (\psi) & \cos (\psi)
\end{array}\right)
$$

- Rotation matrix B around y^{\prime} axis $\rightarrow\left(x^{\prime}, y^{\prime}, z^{\prime \prime}\right)$

- Rotation matrix C around $z^{\prime \prime}$ axis $\rightarrow\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)$

$$
C=\left(\begin{array}{ccc}
\cos (\Omega t) & \sin (\Omega t) & 0 \\
-\sin (\Omega t) & \cos (\Omega t) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Application of the models

Kepler-63 - Planetary transit model

$\psi=$ stellar obliquity
$\theta=$ Inclination of rotation axis

$$
\begin{gathered}
\Omega t=\frac{2 \pi}{P_{r o t}} \cdot k \cdot P_{\text {orb }} \\
M_{r o t}=C \cdot B \cdot A \\
M_{r o t}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \\
\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)
\end{gathered}
$$

