Stellar activity and rotation of Kepler-63

Yuri Netto Advisor: Dra. Adriana Valio Co-Advisor: Dr. Nuccio Lanza

CRAAM - Presbyterian Mackenzie University, Brazil

Osservatorio Astrofisico di Catania, Italy

6 September 2019

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 PMU e OACT

* ロ > * 伊 > * 国 > * 国 > *

Sun and others stars

- Strong magnetic fields that inhibits the transference of energy from the convective zone.
- Are colder than the surrounding photosphere.
 - Umbra 4200 K
 - Penumbra 5000 K
 - Number of sunspots is not constant in time

・ロト ・ 聞 ト ・ 思 ト ・ 思 ト

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Sun and others stars

Solar activity cycle

 In 1843 Schwabe noticed a periodic variation in the average number of sunspots

* ロ > * 伊 > * 国 > * 国 > *

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Sun and others star

Differential rotation

- Differential rotation: fundamental for the solar dynamo
 - Do not rotate as a solid sphere.
 - Differential rotation: 24 days (equator) e 31 days (poles)
 - Responsible for active regions

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Sun and others star Starspots

- Other stars also exhibit activity and have spots
- Basically 3 methods to study starspots:
 - Zeeman-Doppler imaging
 - Planetary transit (Silva, 2003)
 - Light curve rotational modulation (Lanza, Bonomo, Rodonò, 2007)

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ・ロ・・雪・・声・・声・ うへぐ

Methodology

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Methodology Planetary transit method

- Model created by Silva (2003)
- Planetary transit:
 - Star: Sun image or synthesized image of a star with limb-darkening
 - Planet: dark disk R_p/R_s
 - Circular orbit, with semi-major axis a/R_s and period P_{orb}

イロト イポト イヨト イヨト

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Physical characteristics of the spots: size, intensity e location.

- Properties of the fitted spot:
 - Size: radius, in units of the radius of the planet, *R*_p
 - Intensity: fraction of the maximum brightness intensity of the star that can be converted to temperature

イロト イポト イヨト イヨト

• Position: longitude and latitude

$$T_m = \frac{h\nu}{K_B} \left[\ln \left(1 + \frac{\mathrm{e}^{\frac{h\nu}{K_B T_e}} - 1}{f_i} \right) \right]^{-1}$$

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Methodology Spotmap - Earth referential frame

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Methodology Rotational period of the star at transit latitude

• To determine the rotational period at a given latitude, it is necessary to detect the same spot in several transits. (Valio, 2013)

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Methodology Rotational period of the star at transit latitude

 $\begin{aligned} \beta_{rot} &= \beta_{topo} - (360^\circ) \frac{nP_{orb}}{P_{star}} \\ \beta_{rot} &= \text{rotational longitude (star)} \\ \beta_{topo} &= \text{topocentric longitude (Earth)} \end{aligned}$

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ・ロット ●日 > ●日 > ●日 > ● ● ● ● ● ●

Methodology

Rotational period of the star at transit latitude

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Methodology Spotmap - Referential frame rotation with the star

Spotmap: CoRoT-2

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ▲□ > ▲圖 > ▲ 臣 > ▲臣 > ▲ 臣 - 釣�?

Methodology Rotation and differential rotation of stars

• Solar rotation profile: $\Omega = A - B \sin^2(\alpha)$ where $P = 2\pi/\Omega$

イロト イヨト イヨト イヨト

Mean rotation period $\rightarrow \Omega_0 = \frac{1}{(\alpha_2 - \alpha_1)} \int_{\alpha_1}^{\alpha_2} (A - B \sin^2 \alpha) d\alpha$ Rotation period at the latitude $\alpha_1 \rightarrow \Omega_1 = A - B \sin^2(\alpha_1)$

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Methodology Rotation and differential rotation of stars

• Solar rotation profile: $\Omega = A - B \sin^2(\alpha)$ where $P = 2\pi/\Omega$

- Differential rotation measured in radian per day (rd/d), is given by $\Delta\Omega = \Omega_{eq} - \Omega_{pole}$
- Relative differential rotation, in %, is given by $\Delta\Omega/\Omega_0$

$$\begin{split} &\Delta\Omega = \Omega_{eq} - \Omega_{pole} \\ &\Omega_{eq} = \Omega(lat=0) = A \\ &\Omega_{pole} = \Omega(lat=90^\circ) = A - B \end{split}$$

イロン 不得と イヨン イヨン

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

- Q: Ratio between areas of faculae and spot
- Q is obtained by a model developed by Lanza (2003):
 - Rotational modulation fit: 3 active region (spots and faculae)
 - Few free parameters
 - Determination of Δt_{f} , longer time interval that the active regions remain stable
 - Q is determined by minimizing χ^2

- Model by Lanza, Bonomo, Rodonò (2007)
- Maximum entropy model:
 - Based on continuous active region distributions
 - Subdivided into 200 surface elements that contain unperturbed photosphere, dark spots, and faculae
 - Filling factor: spot area (f_k), faculae area (Qf_k) e quiet photosphere (1 (Q + 1)f_k)

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

Methodology Maximum Entropy Model (MEM)

- Ω = angular velocity
- θ = colatitude
- ϕ = longitude

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

- Light curve is fitted by changing the filling factor (f)
- Q is kept constant
- $Z = \chi^2(f) \lambda S(f)$
- $\lambda = 0 = \text{unstable}$

Methodology Maximum Entropy Model (MEM)

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

- Optimal value of λ :
 - mean of the residuals $|\mu_{reg}| = \sigma_0/\sqrt{N}$, where σ_0 is the standard deviation of the residuals of the unregularized model ($\lambda = 0$).

Star: Kepler-63

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

1.020 1.015 1.010 1.005 1.000 0.995 0.995 0.985

Application of models Kepler-63 - Planetary transit method

- 150 transits
- Curve without spot: 10 deepest transits without any visible spot signature

イロン 不得入 不良人 不良人 一度

- Final fit: AMOEBA
- 297 spots

Almost polar orbit \rightarrow rotation matrix

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

Application of models Kepler-63 - Planetary transit method

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ▲□ > ▲圖 > ▲ 臣 > ▲臣 > ― 臣 … のへで

Application of models Kepler-63 - MEM

Kepler-63 light curve with the fit

• mean of the residuals μ_{reg} = - 4.972 imes 10 $^{-6}$ \simeq - σ_{BL}/\sqrt{N}

• standard deviation of the residuals $\sigma_{reg} = 1.401 \times 10^{-4}$

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ▲ロ → ▲周 → ▲ 国 → ▲ 国 → の Q ()

Results Kepler-63 - Planetary transit method

Butterfly diagram

Results Kepler-63 - MEM

- active regions migration: 5000-5100
 5700-5900
 6100-6200
- $\bullet\,$ migration rate $\sim\,1^{\circ}/day$
- $\Delta\Omega/\overline{\Omega}=1.5\%$

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ि 📃 🔊 ९ PMU e OACT

(日) (四) (日) (日)

Results Kepler-63 - MEM

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63

PMU e OACT

<ロト <個> <注> <注> 二注:

Conclusion

 Transit method: 297 spots It is not possible to calculate a differential rotation Butterfly diagram

Parameter	Unit	Average		
Radius	(R_p)	0.65 ± 0.13		
Radius	(Mm)	26 ± 5		
Intensity	(I_c)	0.43 ± 0.15		
Temperature	(K)	4700 ± 300		

• MEM: Active longitude at $\sim 100^\circ$ Lower limit for $\Delta\Omega/\overline{\Omega}=1.5\%$

• Comparison between the maps was not possible

イロト 不良と 不良とう

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ▶ ≣ ∽ि९ PMU e OACT

Conclusion

Star	Kepler-17	Kepler-63	Kepler-71	CoRoT-2	Sun
Mass (M _{Sun})	1.16	0.984	0.997	0.97	1.0
Radius (R _{Sun})	1,05	0.901	0.887	0.902	1.0
T_{eff} (K)	5780	5576	5540	5575	5778
Age (Gyr)	1.78	0.2	2.5-4.0	0.13-0.5	4.6
Dif. Rot. (rd/d)	0.041	0.081	0.005	0.042	0.05
Relat. dif. rot. (%)	8.0	1.5	< 2	3.04	22.1
Planet	Kepler-17b	Kepler-63b	Kepler-71b	CoRoT-2b	
Radius (<i>R_{star}</i>)	0.138	0.0662	0.1358	0.172	
a (<i>R_{star}</i>)	5.738	19.35	12.186	6.7	
Spots					
Radius (Mm)	$49~\pm~10$	26 ± 5	51 ± 26	$55~\pm~19$	12 ± 10
T_{spot} (K)	$5100~\pm~300$	$4700~\pm~300$	$4800~\pm~500$	$4600~\pm~700$	$4800~\pm~400$

• Kepler-63 and CoRoT-2 have slightly cooler spots than evolved stars

• Discarding Kepler-71, the younger the star is, the lower the relative differential rotation it presents.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ • のへで

Thanks!

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Application of the models

Kepler-63 - Planetary transit model

• Rotation matrix A around the x axis \rightarrow (x, y', z')

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\psi) & -\sin(\psi) \\ 0 & \sin(\psi) & \cos(\psi) \end{pmatrix}$$

• Rotation matrix B around $y' axis \rightarrow (x', y', z'')$

$$B = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$$

$$x_1 = R_{\star} \times \cos(lat) \cos(long)$$

$$y_1 = R_\star \times \cos(lat) \sin(long)$$

 $z_1 = R_{\star} \times \sin(lat)$

$$C = \begin{pmatrix} \cos(\Omega t) & \sin(\Omega t) & 0\\ -\sin(\Omega t) & \cos(\Omega t) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

イロト 不得 とくほと 不良 とう

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ৰ≣া ≣া পি ৭০ PMU e OACT

Application of the models

Kepler-63 - Planetary transit model

 $\psi = \text{stellar obliquity}$ $\theta = \text{Inclination of rotation axis}$

$$\Omega t = \frac{2\pi}{P_{rot}} \cdot k \cdot P_{orb}$$
$$M_{rot} = C \cdot B \cdot A$$
$$M_{rot} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
$$\begin{pmatrix} x_1 \\ y_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

Yuri Netto, Advisor: Dra. Adriana Valio, Co-Advisor: Dr. Nuccio Lanza Stellar activity and rotation of Kepler-63 ・ロト ・四ト ・ヨト ・ヨー うくぐ