

Adriana Valio (aka A. Silva or A. Silva-Valio)

Center for Radio Astronomy and Astrophysics Mackenzie Presbyterian University (São Paulo, Brazil)

2019 Precision Spectroscopy, 6 September 2019

Contents

 Introduction • Model Spots characterístics Stellar rotation & differential rotation Magnetic field & magnetic cycles Flares and biological impact • Summary & conclusions

Spots

- Sunspots were the first indications of solar activity
- Very likely, all cool stars with a convective envelope like the Sun will have spots on their surfaces
- Current telescopes do not have the spatial resolution to detect spots similar to sunspots

Star spots

1st paper: Silva (2003)

Extrasolar planets

- Total of 4109 confirmed exoplanets discovered (04/Sep/2019);
- 2955 (72%) planets transit in from of its host star;
- Satellites:
 - MOST
 - CoRoT
 - Kepler/K2
 - TESS

Guimarães & Valio (2018)

Contents

Model: ECLIPSE

- Star
 - Limb darkening
- Planet
 - Radius (fraction of R_{star})
- Orbit circular (e=0)
 - Semimajor axis (a)
 - Period (P_{orb})
 - Inclination (i)

Silva (2003)

Spots

- Spot: 3 parameters:
 - Intensity (I_c)
 - Size (R_p)
 - Position:
 - Longitude & Latitude

• Foreshortenning effect of spots included

Light curve fitting

Stellar Systems

Star	CoRoT-2	CoRoT-4	CoRoT-6	CoRoT- 8	CoRoT-18	Kepler-17	Kepler-63	Kepler-71
Spectral type	G7V	F8V	F9V	K1V	G9V	G2V	G8V	G7V
Mass (M _{sun})	0.97	1.10	1.055	0.88	0.95	1.16	0.984	0.997
Radius (R _{sun})	0.902	1.17	1.025	0.77	1.0	1.05	0.901	0.887
Prot (d)	4.54	8.87	6.35	21.7	5.4	12.28	5.4	19.77
Teff (K)	5625	6190	6090	5080	5440	5781	5576	5540
Age (Gyr)	0.13-0.5	0.7-2.0	1.0-3.3	2.0-3.0	?	>1.78	0.2	2.5-4
Planet								
Mass (M _{jup})	3.31	0.72	2.96	0.22	3.47	2.45		
Radius (R_{star})	0.172	0.107	0.117	0.090	0.142	0.138	0.0662	0.1358
Porb (d)	1.743	9.203	8.886	6.212	1.90	1.49	9.434	3.905
a (R _{star})	6.7	17.47	17.95	17.61	6.35	5.73	19.55	12.186
Latitude (°)	-14.6	0	-16.4	-29.4	-22.8	-4.6		-5.4

Contents

 Introduction • Model Spots characterístics Stellar rotation & differential rotation Magnetic field & magnetic cycles Flares and biological impact • Summary & conclusions

Temperature

• Black body emission for spot & stellar photosphere

Spot characteristics

Star	CoRoT-2	CoRoT-4	CoRoT-6	CoRoT- 18	Kepler-17	Kepler-63	Kepler-71	Sun
Radius (Mm)	55 <u>+</u> 19	51 <u>+</u> 14	48 <u>+</u> 14	65 <u>+</u> 19	80 <u>+</u> 50	32 <u>+</u> 14	51 <u>+</u> 26	12 <u>+</u> 10
Area (%)	13	6	9	13	11		4	< 1
Tspot (K)	4600 <u>+</u> 700	5100 <u>+</u> 500	4900 <u>+</u> 600	4800 <u>+</u> 600	5100 <u>+</u> 500	4700 <u>+</u> 4 00	4800 <u>+</u> 5 00	4800 <u>+</u> 400
T _{eff} (K)	5625	6190	6090	5440	5780	5576	5540	5780
T_{spot}/T_{eff}	0.818	0.824	0.804	0.882	0.875	0.846	0.866	0.830

Contents

- IntroductionModel
 - Spots characterístics
 - Stellar rotation & differential rotation
 - Magnetic field & magnetic cycles
 - Flares and biological impact
 - Summary & conclusions

Solar Rotation

Rotation from transits

29 April 2000

Silva-Valio (2008)

Simulation: 4 spots

Rotational longitude

Solution Coordinate system transformation from Earth centered, β_{topo} , to a coord. system that rotates with the star with P_{rot} , β_{rot}

$$\beta_{rot} = \beta_{topo} - 360^{\circ} \frac{n P_{orb}}{P_{rot}}$$

- P_{orb} = orbital period (d)
- rightarrow n = transit number
- Vary P_{rot} until spots align vertically in stellar surface map.

Stellar surface map

Solar differential rotation

Differencial rotation

Yuri Netto

Coplanar orbit

Assume solar profile

$$\Omega = A - B\sin^2(\alpha)$$

$$\blacktriangleright$$
 where $P = \frac{2\pi}{\Omega}$

- \blacktriangleright Two measurements:
 - \clubsuit Average P_{rot} :

 \mathbf{P}_{rot} at latit

$$\Omega_0 = \frac{1}{\alpha_2 - \alpha_1} \int_{\alpha_1}^{\alpha_2} (A - B\sin^2 \alpha) \, d\alpha$$

$$u de \alpha_1$$
 (transit): Ω_1

$$\Omega_1 = A - B\sin^2 \alpha_1$$

 \succ Differential rotation : $\Delta \Omega (rd/d) = \Omega_{eq} - \Omega_{pole}$ \blacktriangleright Relative differential rotation: $\Delta\Omega/\Omega$ (%)

Stellar rotation

Star	CoRoT-2	CoRoT-4	CoRoT-6	CoRoT-18	Kepler-17	Kepler-71	Sun
Mass (M _{sun})	0.97	1.10	1.055	0.95	1.16	0.997	1.0
Latitude (°)	-14.6	0	-16.4	-22.8	-4.6	-5.4	0
P _{rot} (d)	4.54	8.87	6.35	5.4	12.28	19.77	27.6
$P_{rot}(lat)$	4.48	8.71	6.08	4.68	11.4	19.71	
Diff Rot (rd/d)	0.042	0.026	0.101	0.45	0.077	0.005	0.050
Relat Diff Rot. (%)	3.04	3.64	10.2	38.0	15.0	< 2	22.1
P _{equat} (d)	4.47	8.53	5.98	4.5	11.4	19.67	24.7
$P_{orb}: P_{equat}$	2:5	1:1	3:2	2:5	1:8	1:5	

Contents

• Introduction • Model Spots characterístics Stellar rotation & differential rotation Magnetic field & magnetic cycles Flares and biological impact • Summary & conclusions

Sun

 32,317 sunspots from 6970 SOHO/MDI images and magnetograms (cycle 23: 1996-2008)

Sunspots characteristics

Other stars

- Four stars with transiting planets were analyzed;
- Small variations in the transit light curves of these stars have been fit yielding the characteristics of:
 - 392 spots CoRoT-2
 - 1069 spots Kepler-17
 - 297 spots Kepler-63
 - 76 spots Kepler-71
- Spot intensity => Magnetic Field

$$B_{mag} = (4848 \pm 15) - (4008 \pm 20) \cdot \frac{I_{spot}}{I_{star}}$$

Magnetic Cycles

Raissa Estrela

-70°

0

-2

70°

2

6

4

Kepler-17 100th transit. -6

-4

Magnetic cycle: Kepler-17

 Magnetic cycle of 410 days or 1.13 yr

Estrela & Valio (2016)

Kepler-63

Contents

 Introduction • Model Spots characterístics Stellar rotation & differential rotation Magnetic field & magnetic cycles Flares and biological impact. • Summary & conclusions -

The biological impact of superflares on a planet in the Habitable Zone

Raissa Estrela and Luisa Cabral

Superflares effects on habitability

- Superflares release significant amounts of X-rays, EUV, and UV radiation
- Depending on the energy of the flare, they can cause changes in the planetary atmosphere:
 - Atmospheric loss
 - Alter the chemical composition of the upper atmosphere
- Protons that arrive from the flare produce odd nitrogen and odd hydrogen in the upper stratosphere and mesosphere that destroy ozone. Segura et al. (2010)
 - Could affect the origin and evolution of life

- * Hypothetical planet in the habitable zone of Kepler-96
- ★ Kepler-96b

Not habitable at all!
 High temperature ~ 2000 / 3000K

* Trappist-1: 3 planets in the HZ

Kepler-96 has an age that corresponds to the end of the Archean Era on Earth

Great Oxygenation Event

This can be used as a proxy to understand:

the primitive Earth environment
 a planet in HZ with Archean conditions

 (assuming it had enough time to evolve)

Modelling flares in planetary transits

Characterístics of the superflares

Transit	Amplitude $[I_c]$	Energy [ergs]
30th	39627 ± 0.00002	2.0×10^{33}
48th	2986143 ± 0.002	1.8×10^{35}
67th	32885 ± 0.00006	1.2×10^{33}

Energy range that corresponds to superflares

Fírst approach: analogy with the Sun

To analyse E_{eff} , we used the UV flux (180-300nm) passing through atmospheres at different epochs in Earth:

Based on Setlow et al. (1965), Calkins (2013) and O'malley & Kaltenegger (2017)

Biological Impact: surface

Biological effective irradiance from Kepler-96, E_{eff} [J/m²] Contribution of the **strongest** superflare (10³⁵ erg)

	No atmosphere	Archean atmosphere	Present-day atmosphere					
E. Coli	1.4 x 10 ⁵	2 x 10 ⁴	22					
D. Radiodurans	8 x 10 ⁴	1.3 x 10 ⁴	7.5					
Contribution of a smaller superflares (10 ³³ erg)								
E. Coli	3 x 10 ³	455	0.5					
D. Radiodurans	2 x 10 ³	202	0.16					

 $\int F(\lambda)S(\lambda)d\lambda$ $E_{eff} =$

> Only with ozone D. Radiodurans could survive in an Archean atmosphere

Microorganisms that define survival zone for life:

Flux (dosage) for 10% survival:
$$F_{10}^{UV} = 5.53 \times 10^2 J/m^2 \longrightarrow radioduran$$

us S

coli

 $F_{10}^{UV} = 22.5 J/m^2 \longrightarrow \text{Escherichia}$

Ghosal et al (2005) Gascón et al (1995)

Biological Impact: ocean

The propagation of the UV radiation in the ocean varies considerably with depth, and can be determined by the equation:

- → For Kepler-96 system, the ocean might provide a safe refuge against the UV radiation.
- → We assume here that the hypothetical Earth orbiting the star Kepler-96 has an Archean ocean where life could be protected.

Estrela & Valio (2018), Astrobiology
arXiv:1708.05400
Biological Impact: ocean
Considering the UV flux increased by the strongest superflare: Pofanet at 1A21
Considering the UV flux increased by the strongest superflare: Pofanet at 1A21

$$I_{00}^{00} \frac{1}{10^{-2}} \frac{1}{10^{-1}} \frac{1}{10^{-1}} \frac{1}{10^{-1}} \frac{1}{10^{-2}} \frac{1}{10^{-1}} \frac{1}{10^{-2}} \frac{1}{10^{-2$$

ŀ

Trappist-1 system

- M8 red dwarf
- Planetary system of 7 terrestrial planets, three of them in the HZ.

Trappíst-1 system

- This star is known to flare with 47 flares detected with energies between 10³⁰ and 10³³ ergs (Vida et al. 2017).
- Largest flare released a total energy of 1.24 10³³ erg over 43 min
- The UV flux contribution from TRAPPIST-1, was taken as the same UV flux measured from flares of Ad Leo, also a M red dwarf (Hawley & Pettersen 1991).
- Atmosphere model from O'Malley & Kaltenegger (2017)

Impact for life on the surface

Biological effective irradiance from TRAPPIST-1, E_{eff} [J/m²] Contribution of the strongest superflare (10³³ erg)

Planet	Bacteria	Archean atmosphere	Atmosphere with ozone
TRAPPIST-1e	E. Coli	9000	8.2
	D. Radiodurans	5100	2.5
TRAPPIST-1f	E. Coli	5200	4.7
	D. Radiodurans	2900	1.5
TRAPPIST-1g	E. Coli	3300	3.0
	D. Radiodurans	1900	0.9
		Without	With ozon

Flux (dosage) for 10% survival: $F_{10}^{UV}=5.53 imes10^2 J/m^2$

$$F_{10}^{UV} = 22.5 \ J/m^2$$

Escherichia coli

ozone

Deinococcus

radiodurans

Contents

 Introduction Model Spots characterístics Stellar rotation & differential rotation Magnetic field & magnetic cycles Flares and biological impact Summary & conclusions -

Summary

Corot4 Corot8 Corot2 Corot4 Corot6 Corot4 Corot6 Corot

Conclusions

• First modelling of small variations in transit light curves (Silva 2003, ApJL, 585, L147)

Multiple transits:

- Stellar rotation (Silva-Valio 2008, ApJL, 683, L179)
- Differential rotation (Silva-Valio et al. 2010, A&A, 510, 25; Silva-Valio & Lanza 2011, A&A, 529, 36; IAUS328; Valio et al. 2017, ApJ, 835, 294)

Magnetic cycles (Estrela & Valio 2017, ApJ, 831, 57)

Flares:

UV flux: Impact on living organism *(Estrela & Valio 2018, Astrobiology)* Impact on planetary atmospheres

OBRIGADA!

Code ECLIPSE available in IDL or Python (adrivalio@gmail.com)

