

Carbon, Nitrogen and the isotopic ratio ¹²C/¹³C in solar twins

Rafael Botelho (INPE) André Milone (INPE) Jorge Meléndez (IAG - USP) et al.

Motivation: connection to planet formation

- C, N and O are essential to life like we know
- They also play a role in the formation of giant planets
 - whose seeds are built beyond the snowline in proto-planetary discs through coagulations of dust particles, growth of cm-sized objects to km-sized planetesimals and collision/accretion of planetesimals to planetary embryos, in which ices of CNO act as efficient stickers (referencia)
- High precision CNO characterization in solar-type stars can help us to understand the planet formation: what about well-analysed solar twins?
- What would the C and N abundances and their isotopic ratios be in nearby solar twins along the Galaxy disc evolution?
- Were nearby solar twins born with a uniform ¹²C/¹³C ratio, or even a uniform chemical composition?
- Are the solar twins also solar siblings?

Sample: HARPS solar twins

- 66 stars + Sun
- Photospheric parameters, age, mass, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd e Dy by Spina et al. (2018)
- C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, e Zn by Bedell et al. (2018)
- HARPS: λλ3780 6910 Å, R=115.000
- T_{eff}: 5678 to 5912 K
- log g: 4.275 to 4.540 dex
- [Fe/H]: -0.126 to 0.132 dex
- Age: 0.5 to 8.4 Gyr
- Mass: 0.96 to 1.08 M_o
- V_{macro} & v.sin(i): dos Santos et al. (2016)

CH A-X lines	CN B-X lines	¹³ CH A-X lines
λ4211.0 Å	λ4180.0 Å	λ4297.1 Å
λ4212.6 Å	λ4193.0 Å	λ4298.1 Å
λ4216.6 Å	λ4193.4 Å	λ4299.4 Å
λ4217.2 Å	λ4195.9 Å	λ4299.7 Å
– λ4218.7 Å	λ4212.2 Å	λ4300.6 Å
λ4248.8 Å		λ4303.3 Å
λ4255.2 Å		
λ4278.9 Å		
λ4281.9 Å		
λ4288.7 Å		
λ4378.2 Å		
λ4387.0 Å		

Synthesis Process

HIP10175

- 7 synthetic spectra
- step : 0.01 dex
- χ^2 minimization
- abundance error
 is due to the
 synthesis and
 error parameters
 propagation

 $v.sin(i) = 1.83 \text{ km}.\text{ s}^{-1}$

 $v_{macro} = 2.89 \text{ km} \cdot \text{s}^{-1}$

 $Chi_{min}^{2}/v = 2.135$

SNR= 353

- 7 synthetic spectra
- step:15
- Solar = 89.4

Nitrogen

Isotopic ratio

Isotopic ratio

Conclusions

- The volatiles C and N are slightly enhanced in the Sun relative to the refractory Fe in comparison with solar twins.
- Solar twins seem to be solar siblings indeed
 - \circ ¹²C/¹³C ratio is uniformly solar across the age scale of solar twins
- There is a correlation between ¹²C/¹³C and [Fe/H] <=> Galactic chemical evolution in the solar neighborhood
- [C/Fe] is uniformly undersolar against [Fe/H] and age
- [N/Fe] is uniformly undersolar over [Fe/H], but it has a correlation with age
- [N/C] increases with age <=> Galactic chemical evolution in the solar neighborhood
 - N seems to be produced in more massive stars than C

