Department of Astronomy University of Sao Paulo IAG/USP

A large-sample analysis of the radius anomaly problem in short-period eclipsing binaries

Patricia Cruz

P. Cruz - Precision Spectroscopy, Sao Paulo - Sept 2019

The radius inflation problem in short-period low-
mass binariesa large sample analysis

Search for detached EBs (DEBs) in the Catalina Sky Survey (Drake et al. 2009). \rightarrow CSDR1, CSDR2 (Drake et al. 2012, 2014)

Criteria:

Detached systems with periods shorter than 2 d.

Low-mass main-sequence stars as components: later than G3 dwarf (Teff < 5720 K; M < 1 Msun)

MNRAS 482, 5379-5388 (2019)

The radius inflation problem in short-period low-mass binaries: a large sample analysis

Hernán E. Garrido,^{1,2,3}* Patricia Cruz,³* Marcos P. Diaz^{®3} and John F. Aguilar⁴

230 DEBs with LMMS (Low-Mass Main Sequence) stars: solving the systems with photometric data only.

Getting temperatures and masses from broadband photometry

using clustering techniques

 \rightarrow The binary systems go under a supervised statistical analysis which uses clustering techniques to search for similarities between observed data and models, based on a multi-color dataset.

SDSS–2MASS ten-color calibration grid of synthetic composite colors. (ugriz) (JHK)

990 models – based on 1 and 3 Gyr models from Bressan et al. (2012).

K-Nearest Neighbors classifiers method (Hartigan 1975) to assign Teff for each component of the system.

Masses from the semi-empirical values of stellar colors and effective temperature sequence by Pecaut & Mamajek (2013).

 \rightarrow We used the JKTEBOP code (Southworth et al. 2004) modified with the Asexual Genetic Algorithm (Coughlin et al. 2011) for the light curve modeling.

Getting temperatures and masses from

The mass-radius diagram A large sample analysis

(Garrido, Cruz et al. 2019, fig. 4)

These results also suggest a global trend of inflation for low-mass stars.

Secondaries seem more inflated than primary components.

Are the secondaries more inflated? The Kolmogorov-Smirnov test

(Garrido, Cruz et al. 2018, fig. 5)

For the less massive objects in our sample (Ms < 0.70 Msun), the significance of the KS test is only 0.005.

From the literature: 61% of the well-characterized short-period EBs present more inflated secondary components.

(Garrido, Cruz et al. 2019, table 2)

	Mass range Number of (M _☉) Primaries Secondaries		nber of Secondaries	Number of stars per bin	Percentage (%)	Statistical significance
BIN 1	0.70 < M < 1.00	118	35	153	33.26	0.655
BIN 2	0.56 < M < 0.70	66	87	153	33.26	0.005
BIN 3	0.20 < M < 0.56	46	108	154	33.48	0.005

P. Cruz - Precision Spectroscopy, Sao Paulo - Sept 2019

Ongoing project

Photometric study of LMEBs – Garrido, Cruz et al. 2019

The analysis of large samples is important and can reveal additional global trends.

- Are the secondary components more inflated than primaries? Why?

– Is the suggestion of a bimodal radii distribution a real trend?

More data are under analysis – Observational campaigns

Granted telescope time in 2018:

- 13.1 hours at the 8.1m-GEMINI-North with GRACES for RV measurements \rightarrow unfortunately, only 0.5h of acquired data
- 11 nights at the 0.6m-OPD/LNA for photometric follow up.

Last semester (2019):

– 5 nights at the 4.2m-WHT/ING with ISIS and ACAM for RVs and spectral typing;

- 26 hours at the 4.1m-SOAR with GOODMAN for RVs;
- 3 nights 1.6m-OPD/LNA for spectral typing;
- 10 nights at the 0.6m-OPD/LNA for photometric follow up.

Thank you!

Patricia Cruz patricia.cruz@usp.br pcruz.astro@gmail.com