Differential abundances in the HAT-P-4 binary system

Carlos Saffe^{1,4}, <u>Emiliano Jofré^{2,4}</u>, Eder Martioli³ Matías Flores^{1,4}, Romina Petrucci^{2,4} & Marcelo Jaque^{1,4}

(1) Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE), Argentina

- (2) Observatorio Astronómico de Córdoba (OAC), Argentina
- (3) Laboratório Nacional de Astrofísica (LNA/MCTI), Brasil
- (4) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Precision Spectroscopy 2017, August 2017, São Paulo, Brazil

Why is important to study wide binary systems with similar components?

-Under the assumption both components formed in the same environment (from a common molecular cloud) **Ideal laboratories to analyze the effect of planet formation on the stellar composition**

- Wide binary systems with similar components ---> high-precision relative abundances

Short list of binary systems (with similar components) hosting planets/disk:

- # Wide binaries with planets around both components:
- WASP-94 (Teske+ 2016)
- XO-2 (Ramírez+2014, Teske+ 2015)
- HD 20782/81 (Mack+ 2014)
- # Wide binaries with planets around only one component:
- HD 80606/7 (Saffe+ 2015)
- 16 Cygni (Ramírez+ 2011; Tucci Maia+ 2014)
- HAT-P-1 (Liu+ 2014)

Wide binaries with **debris-disk around only one component:** - ζ^2 Ret (Saffe+ 2016)

It is key to study more of these systems!

The HAT-P-4 Binary System

Selected from Mugrauer+ 2014:

detected seven new wide companions of exoplanet host stars based on proper motions and follow-up spectroscopy

Good candidate to perform a differential abundances analysis based on its characteristics:

Component	Spectral Type	V mag	
Primary (HAT-P-4 A)	G0 V	11.12	
Secondary (HAT-P-4 B)	G2 V	11.38	

Projected separation of ~28446 AU (Mugrauer+2014)

To date, no planets detected around HAT-P-4 B

(Also, monitored by the HATNet survey)

Hosts a giant short-period transiting planet: (P=3.05 days; $M_p=0.68 M_J$; $R_p=1.27 R_J$)

Observations

*See Jofré+2015 for more details (first GRACES' science paper)

GRACES (Gemini Remote Access to CFHT ESPaDOnS Spectrograph)*

Gemini North (8.1 m)

Observations

GRACES (Gemini Remote Access to CFHT ESPaDOnS Spectrograph)

Fast Turnaround observing mode (GN-2016A-FT-25, Argentinian time) on June 3, 2016

1-fiber (object only)

----> R~68000

---> wavelength coverage: 400 -- 1000 nm

Object	exptime	S/N (6000 Å) combined spectra
HAT-P-4 A	2 x 16 min	~400
HAT-P-4 B	2 x 18 min	~400
Moon	3 x 10 sec	~450

-Reduction

→ OPERA (Open-source Pipeline for ESPaDOnS Reduction and Analysis; Martioli +2012)* (See ESPECTRO webpage <u>http://wiki/espectro</u>)

-Doppler correction, spectra combination, normalization \rightarrow IRAF

GRACES spectra spanning the wavelength range from ~6118 to 6145 A

Stellar parameters and chemical abundances analysis

Methodology:

1- Measurements of EWs of Fe I and Fe II lines and other chemical species ----> SPLOT (IRAF)

(Line list and laboratory data: Liu+2014; Meléndez+2014, and Bedell+2014)

2- Atmospheric parameters (T_{eff} , log g, [Fe/H], ξ) of HAT-P-4 A & B ---> excitation and ionization balance of Fe I and Fe II lines based on a **<u>line-by-line differential analysis</u>**:

I) A and B relative to the Sun (Teff = 5777 K, log g=4.44 dex, [Fe/H]=0, and vt = 1.00 km/s) II) HAT-P-4 B relative to HAT-P-4 A

FUNDPAR code (differential version, Saffe+2015)
 -MOOG (Sneden 1973)
 -ATLAS9 model atmospheres (Kurucz 1993)

Example of balancing plot

Stellar parameters and chemical abundances analysis

Final atmospheric parameters

HAT-P-4 A Reference	T _{eff} (K)	log <i>g</i> (cgs)	[Fe/H]	ξ(km/s)
HAT-P-4 A	6036 ± 46	4.33 ± 0.10	0.277 ± 0.007	1.29 ± 0.07
HAT-P-4 B	6035 ± 36	4.39 ± 0.10	0.172 ± 0.006	1.22 ± 0.07
⊿(B-A)	1 ± 59	0.06 ± 0.19	-0.105 ± 0.009	-0.07 ± 0.09

Parameters (T $_{eff}$, log g, ξ) of both components are very similar---> "twin stars"

HAT-P-4 A is more metal-rich than HAT-P-4 B by ~0.10 dex

Stellar parameters and chemical abundances analysis

Elemental abundances for 20 elements:

- C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Ni, Sr, Y, Ce Curve-of-growth analysis within MOOG from EWs

The abundances were computed on a strictly differential line-by-line basis using both the Sun and the A star as reference

Results

Differential elemental abundances of HAT-P-4 B – HAT-P-4 A as function of dust condensation temperature (T_c)

#Slopes: -all elements: $(-5.18 \pm 1.15) \times 10^{-5} \text{ dex K}^{-1}$ -refractories: $(-7.81 \pm 2.61) \times 10^{-5} \text{ dex K}^{-1}$

```
# Average differential (B–A) abundances:

\langle \Delta[X/H] \rangle_{refractories} = -0.105 \pm 0.007 \text{ dex}

\langle \Delta[X/H] \rangle_{volatiles} = -0.065 \pm 0.015 \text{ dex}
```

The primary star (planet host) is enhanced in refractory elements relative to volatiles when compared with the secondary (without planets)

Possible scenario: engulfment of rocky material in HAT-P-4 A

1- At the time of planet formation, the primary star locked refractory material in planetesimals and/or rocky planets, and also formed the gas giant in the external disk.

2- The migration of the giant planet from the external disk towards its current location could have triggered dynamical instabilities in the orbits of the rocky planets and/or planetesimals causing their ingestion into the convective zone of HAT-P-4 A and increasing the abundance of refractories.

A very similar scenario was recently proposed for the solar-twin star HIP 68468 (Meléndez+2017)

Lithium Abundances

The accretion scenario could be supported by the lithium abundances:

 $A(Li)_{HAT-P-4 A} = 1.47 \pm 0.04$ $A(Li)_{HAT-P-4 B} = 1.17 \pm 0.06$

Lithium is clearly enhanced in HAT-P-4 A compared with the HAT-P-4 B by ~0.3 dex

However, the slight difference in the stellar mass between both components, $M_A = 1.24 \pm 0.06 M_{\odot} \text{ vs. } M_B = 1.17 \pm 0.04 M_{\odot}$, could also explain the difference in lithium

Summary

First high-precision <u>differential abundances</u> analysis of the **HAT-P-4** (A_{planet}+ B_{no-planet}) binary system based on high-quality GRACES spectra

The planet host star (A) is more metal-rich than the B component by ~0.1 dex

HAT-P-4 A is enhanced in refractory relative to volatiles when compared to B <u>scenario</u>: ingestion of rocky material during the migration of the detected transiting planet

C. Saffe, E. Jofré, E. Martioli, M. Flores, R. Petrucci and M. Jaque 2017 A&A Letters, in press, arXiv: 1707.02180