

INSTITUTO DE ASTROFÍSICA Facultad de física

Lithium as a chemical signature of planet engulfment

Claudia Aguilera Cómez Pontificia Universidad Católica de Chile Instituto Milenio de Astrofísica, Chile

Julio Chanamé, Marc Pinsonneault, Joleen Carlberg, Matías Jones

©Dirk Terrel

3 August 2017

10 R⊙

10 R · · **100 R** ·

 $\odot A(Li) = 1.5 \text{ max}.$

Lithium Rich Red Giants

Lithium Rich Red Giants

Suggested explanations

Non-canonical physics needed!

Internal Mechanisms

Lithium production + Mixing

External Mechanisms

Need external object: Planet? Brown dwarf?

Surface Li abundance

A-G+16

Maximum Li enrichment

Surface Li-6 abundance

Low metallicities

Similar increase in Li-6 than for Li-7 after engulfment. It can be preserved up to the tip of the RGB.

Surface Li-6 abundance

Surface Li-6 abundance

Observational applications

Trumpler 20

Observational applications Field giants

- * Only accreted objects of M<15Mj can produce a signal.
- * Traditional definition of Li-rich giants is misleading.
- * After planet engulfment A(Li)<2.2
- * There are some ideal mass ranges and samples to test this scenario.
- * The lack of Li-6 in a star does not imply that the star has not engulfed a substellar mass companion.
- * Two Li-rich giants found in Trumpler20 could be the product of engulfment.