

Astrofísica Galáctica e Extragaláctica

AGA 299 - IAG/USP

Ronaldo E. de Souza redsouza48@usp.br Março 2024

A Via Láctea

Na Via Láctea a quantidade de informação é enorme e muitas vezes temos dificuldade de compatibilizar todas elas!

J. Kapteyn (1851-1922)

Qual é a vantagem de ver *Via Láctea* como uma distribuição de elipsoides oblatos achatados?

 $\begin{array}{ll} m_i - M_i = 5 \, \log \, r - 5 & ou, \\ r = 10^{\,(m_i - M_i + 5)/5} = k \, 10^{0, 2m_i} \end{array} \\ \end{array}$

.. e uma versão atualizada desta busca baseada nos resultados da missão Gaia (ESA, 2020)

Porque é importante observar em diversos comprimentos de ondas?

Em 408 mHz observamos a emissão dos elétrons relativísticos, gerados pelas supernovas, se movimentando no campo magnético galáctico. 05

F = 1

F = 0

Na linha de 21 cm observamos a densidade de coluna do hidrogênio neutro que se origina de uma transição de spin.

Em 2,7 mHz visualizamos a emissão no contínuo rádio originado pelo gás quente ionizado e também por elétrons de altas energias presentes no meio interestelar. 07

Densidade de coluna do hidrogênio molecular obtida a partir de observações na linha do CO mostra as regiões mais frias e densas do meio interestelar

No infravermelho (IRAS 12, 60 e 100 mícron) temos a emissão térmica da radiação grãos interestelares dos aquecidos pelas estrelas próximas.

No infravermelho próximo (6-10 mícron do satélite MSX), temos a emissão de hidrocarbonetos policíclicos das nuvens interestelares.

No infravermelho próximo (1,25 + 2,2 + 3,5 micron)COBE) a emissão se deve a estrelas do tipo gigantes K presentes no disco e bojo da Galáxia.

No visível a absorção interestelar limita as observações!

Na imagem composta em raios-X (0,25+0,75+1,5 keV ROSAT) temos a emissão devido a ondas de choques gás no interestelar.

13

imagem dos raios-y de altas Na energias (>300 MeV EGRET) temos a emissão de raios-y emitido na colisão de raios cósmicos com os prótons. Ao lado a fonte Geminga identificada com uma estrela de nêutrons.

No final a *Via Láctea* é uma distribuição de estrelas, gás, poeira, radiação e matéria escura.

A *Via Láctea* vista por 1,7 bilhões de estrelas observadas pelo satélite GAIA.

(A)Barnard 68: nuvem molecular fria no limite de contração gravitacional. (B)Cabeça de Cavalo: fria nuvem iluminada pela radiação de estrelas jovens. (C)Caranguejo: resto da supernova 1054 AD. (D) Tarântula: região de formação estelar intensa na LMC.

Correção pela observação em duas bandas

$$A_{V} = V - V_{0} = c k(\lambda_{V}) L$$

$$A_{\rm B} = B - B_0 = c k(\lambda_{\rm B}) L$$

avermelhamento do índice de cor

$$E(B-V) = (B-V) - (B-V)_0 = (B-B_0) - (V-V_0) = A_B - A_V$$

E(B-V) é chamado de excesso de cor.

Como, E(B-V) = c [k(λ_B) - k(λ_V)] L

temos que

 $A_V/E(B-V) = k(\lambda_V)/(k(\lambda_B)-k(\lambda_V)) = R \cong 3,1$

R é independente da dimensão da camada absorvedora, depende da composição dos grãos e imagina-se(?!) que seja aplicável às galáxias externas.

Schlegel, Finkbeiner & Davis (<u>1998, ApJ,500, 525</u>) utilizando dados dos satélites COBE/DIRBE e IRAS

Exemplo de correção

A absorção interestelar na direção da galáxia NGC 3115 indica que A_v= 0,145 mag. Como V=10,01 concluímos que a sua magnitude livre da absorção galáctica deva ser $V_0 = 9,865$.

Exemplo da prova P1 2011

- A partir da aproximação $A_{\lambda} = a + b/\lambda$, sabendo que $\lambda_{v}=0,55\mu$, use o gráfico A_{λ}/A_{v} para determinar a e b e R.

- Suponha que a absorção na direção de uma região próxima ao centro galáctico seja A_V \cong 4 mag. Qual seria a absorção estimada nas bandas U(0,3µ), B(0,44µ), R(0,71µ), I(0,97µ) e K(2,2µ)?

No centro galáctico a extinção interestelar chega a atingir valores de $A_V \cong 310$ mag!

28d

Na direção radial o disco estrelar segue um perfil exponencial

 $\rho_d(R) = \rho_{0d} e^{-R/Rd}$

com $R_{df} \cong$ 2,9 - 3,9 Kpc.

31

Com o modelo $U=U_{Bojo}+U_{DFino}+U_{DEspesso}+U_{Halo}$ Pode-se calcular a aceleração em uma estrela $\ddot{\vec{r}} = -\nabla U$

Gaia G absolute magnitude

Amostras de estrelasdodiscodoslevantamentosSDSSe Hipparcos

Atenção

Ao contrário de um gás ideal o "fluido das estrelas" da Galáxia é anisotrópico!

Tipo	σ_u	σ_v	σ_w
A0-A5	$17,03\pm0,21$	$11,26\pm0,34$	$7,16\pm0,36$
A5-F0	$19,81\pm0,25$	$13,39\pm0,39$	$8,07\pm0,51$
F0-F5	$22,54\pm0,28$	$15,29\pm0,43$	$9,94\pm0,66$
K0-K5	$30,45\pm0,27$	$20,51\pm0,42$	$16,04\pm0,54$
K5-M0	$30,99\pm0,39$	$22,44\pm0,56$	$17,21\pm0,71$
M0-M5	$32,21\pm0,47$	$23,11\pm0,70$	$18,30\pm0,81$

A metalicidade [Fe/H] = $Log(N_{Fe}/N_{H}) - Log(N_{Fe}/N_{H})_{\odot}$ é um indicador da idade das populações estelares e mostra que a nossa Galáxia evoluiu. Como entender este processo?

A população das estrelas mais jovens, com alta metalicidade, apresenta uma rotação mais elevada que a população das estrelas mais velhas.

43

distribuição dos A aglomerados globulares é mais ou menos esférica sendo diferente do bojo e do disco!

S

As estrelas do halo são pobres em metais e normalmente são encontradas mais afastadas do disco rico em estrelas jovens.

~20 kpc

Formação dos primeiros aglomerados globulares pobres em metais <u>~20 kpc</u>, Formação dos aglomerados globulares ricos em metais

Formação do disco e do bojo

Um cenário simplificado para a formação da *Via Láctea*.

Helmi et al, 2018, Nature, 563, 85

Durante a sua evolução a Via Láctea capturou alguns objetos próximos e isto deve ter ocorrido com objeto identificado um como Gaia-Enceladus.

Dados do telescópio James Webb, JWST, estão detectando objetos com redshifts ~ 15-20 e portanto com idades comparáveis com as fases iniciais do colapso da nossa Galáxia.

Quando terminou a era das trevas?

<u>Os atuais</u> modelos Λ CDM são consistentes com estas observações?

Porque podemos tratar Galáxia como um sistema não colisional?

deflexão orbital em encontros hiperbólicos distantes tan $\phi = G(m_1 + m_2)/pv_0^2$

Encontros típicos da vizinhança solar

Densidade de estrelas: $n \cong 0,1 */pc^3$

Separação média: $s=1/n^{1/3} \cong 2,2 \text{ pc} \cong 4,5x10^5 \text{ UA}$

Vel. RMS ao LSR: $v_0 \cong \sigma_v \cong 20 \text{ km/s}$

Deflexão média: $\phi \cong 2$ "

São encontros do tipo fraco!

Como o livre caminho médio é

 $\lambda = 1/\pi p^2 n$

a escala de tempo para estas interações é

t=
$$\lambda / \sigma_v >> t_H \cong 10^{10}$$
 anos

Num gás colisional a estrutura interna se modifica rapidamente enquanto que num gás não-colisional ela se mantém praticamente intacta por muito tempo!

Como se formou a estrutura do disco exponencial?

 $n(r) = n_0 \exp(-r/r_d)$

onde $r_d \cong$ 3,5 Kpc.

Como entender os braços espirais?

Quais são as estrelas típicas do disco?

relação massa-luminosidade

L*/L_o= (M/M_o)^α

55

Como o disco tem $L_{R} \cong (2,5\pm1) \times 10^{10} L_{\odot}$ M_d≅(4,5±0.5)x10¹⁰M_☉ temos que $f=(M/L)_d \cong (1,1-3,3)M_{\odot}/L_{\odot}$ E a massa média das estrelas do disco deve ser

> $M_* = f^{1/(1-\alpha)} M_{\odot}$ ≅ (0,7 - 1,0) M_{\odot}

que podemos escrever na sua forma diferencial

$$\frac{1}{\rho_i}\frac{d}{dz}(\rho_i v_{zi}^2) = -\frac{d\Phi}{dz}$$

onde utilizamos o fato de que a aceleração gravitacional do disco deriva de um potencial gravitacional. Por outro lado este potencial gravitacional obedece a equação de Poisson e

no disco o termo dominante no laplaciano é a derivada na direção vertical

 $d^2\Phi/dz^2 = dg_z/dz \cong 4\pi G\rho$

e portanto

$$\frac{d}{dz} \left[\frac{1}{\rho_i} \frac{d}{dz} (\rho_i v_{zi}^2) \right] = -4\pi G \rho$$
Matéria escura

Componente	Densidade volumétrica (M _☉ /pc³)	
Estrelas visíveis	0,044	
Remanescentes estelares	0,028	
Gás	0,042	
Outros	0,066	
Total	0,180	

ComoseráquequeseformouobojodaGaláxia?

Janelas de Baade

Estrelas do bojo vistas pela janela de Baade

(A) sequência principal

(B) Ramo horizontal HB
(C) Ramo horizontal GHB
(D) RHB
(F-E) turn-off

Estrelas possivelmente pertencentes ao bojo!

A região nuclear só pode ser vista no infravermelho!

A partir da figura verificamos que,

 $V_{r} = \Theta(R) \cos \alpha - \Theta_{0} \sin l$ $V_{t} = \Theta(R) \sin \alpha - \Theta_{0} \cos l$

e a cada distância radial R determinamos a velocidade angular local

 $\Omega(R) = \Theta(R)/R$

As relações anteriores podem ser reescritas como

 $V_{r}=\Omega R \cos \alpha - \Omega_{0}R_{0} \text{sen } I$ $V_{t}=\Omega R \sin \alpha - \Omega_{0}R_{0} \text{cos } I$

e pela figura temos as relações

R cos α = R₀sen / R sen α = R₀cos / - d

- e substituindo nas relações anteriores
- $V_{r} = (\Omega \Omega_{0})R_{0} \text{sen } I$ $V_{t} = (\Omega \Omega_{0})R_{0} \text{cos } I \Omega d$

Estas relações podem ser invertidas e nos permitem obter as estimativas da velocidade angular de rotação, Ω(R), para cada camada radial na vizinhança solar. desenvolvendo a velocidade angular de rotação em uma série de Taylor

 $Ω(R) = Ω_0 + (dΩ/dR)_0 (R-R_0) + ...$

Como Ω=Θ/R esta relação, obtida por Oort, pode ser reescrita como

 Ω - $\Omega_0 \cong 1/R_0 [(d\Theta/dR)_0 - \Theta_0/R_0] (R-R_0) + ...$

e desta forma as relações anteriores podem ser reescritas na forma

 $\begin{aligned} \mathbf{v}_{\mathrm{r}} &\cong \left[\left(\mathrm{d}\Theta/\mathrm{d}R \right)_{0} - \Theta_{0}/\mathrm{R}_{0} \right] \left(\mathrm{R}-\mathrm{R}_{0} \right) \, \mathrm{sen} \, I \\ \mathbf{v}_{\mathrm{t}} &\cong \left[\left(\mathrm{d}\Theta/\mathrm{d}R \right)_{0} - \Theta_{0}/\mathrm{R}_{0} \right] \left(\mathrm{R}-\mathrm{R}_{0} \right) \, \mathrm{cos} \, I - \Omega_{0} \mathrm{d} \end{aligned}$
Pela figura do arranjo geométrico inicial podemos concluir ainda que

 $R_0 = d \cos l + R \cos \beta \cong d \cos l + R$

e definir agora as duas constantes de Oort

 $A=-1/2[(d\Theta/dR)_0-\Theta_0/R_0]$

 $B=-1/2[(d\Theta/dR)_0+\Theta_0/R_0]$

utilizando estas definições obtemos finalmente

 $\mathbf{v}_{r} \cong \mathbf{Ad} \operatorname{sen} \mathbf{2I}$ $\mathbf{v}_{t} \cong \mathbf{Ad} \cos \mathbf{2I} + \mathbf{Bd}$

sabendo A e B estimamos a velocidade local de rotação e a derivada do campo de velocidade

Ω₀=**A**-**B**

 $(d\Theta/dR)_0 = -(A+B)$

Os valores recentes indicam que

A=(14,4 ± 1,2) km/s/kpc B=(-12 ± 2,8) km/s/kpc

 $\Omega_0 = 26,4 \text{ km/s/kpc}$

e para R₀=(8,5±1.1)kpc, à velocidade de rotação da nossa galáxia na posição solar é

Θ₀=224,4 km/s

Mapa do hidrogênio neutro

77

Curva de rotação galáctica

para uma partícula de teste de massa m_{*} temos

 $m_*V^2/R \cong Gm_*M_{halo}/R^2$

onde M_{halo} indica a massa contida no halo de matéria escura. A relação acima implica em que a massa do halo deve ser proporcional ao seu raio (R)

 $M_{halo} \cong V^2 R/G \cong 10^{11} M_{\odot}$

FIM