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Dark matter haloes: shapes

Cosmological simulations

Springel et al. (2008)

from the
cosmological
simulations of
structure formation:
dark matter haloes
are generally triaxial
major-to-minor axis
ratio of as much as
2 is not uncommon
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Dark matter haloes: shapes

Triaxial shape

Kuhlen, Diemand & Madau (2007)

Springel et al. (2008)

from the cosmological
simulations of structure
formation:

dark matter haloes are
generally triaxial

major-to-minor axis ratio of
as much as 2 is not
uncommon
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Haloes and barred galaxies

Elliptical halo potentials

Hayashi et al. (2007)

Barred galaxy

What about bar
formation within an
elongated potential?
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Numerical simulations

N-body problem
calculate force on each
particle due to N − 1 other
particles
Fi =

∑
i 6=j

G mi mj
|ri−rj|2
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Numerical simulations

Tree algorithm

Dehnen (2006)

N-body problem
calculate force on each
particle due to N − 1 other
particles
Fi =

∑
i 6=j

G mi mj
|ri−rj|2

instead, approximate
far-away particles by the
centre-of-mass of that cell
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Numerical simulations

Tree algorithm

Dehnen (2006)

colisionless simulations
gyrfalcON code (Dehnen 2000)

N ∼ 106 particles

mass resolution ∼ 105M�
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Numerical simulations

gas

GADGET2 (Springel 2005)

TreePM: Tree and particle-mesh

SPH: smoothed particle
hydrodynamics
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Part II
Collisionless simulations
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Initial conditions: haloes

halo1

1 : 1 : 1

halo2

1 : 0.8 : 0.6

halo3

1 : 0.6 : 0.4
halo IC: iterative method (Rodionov et al. 2010)
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Initial conditions: density profiles

DISC (exponential)

ρd(R, z) =
Md

4πz0R2
d

exp
(
− R

Rd

)
sech2

(
z
z0

)

HALO (Hernquist)

ρh(r) =
Mh

2π3/2

α

rc

exp (−r2/r2
c)

r2 + γ2

Rd = 1 is the unit of length (say, 3.5 kpc)
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Epycicle approximation

Measure from the triaxial haloes:
εpot(R) : ellipticity of halo potential (as a function of radius)
vc(R) : circular velocity (as a function of radius)

ellipticity of the orbits and
ellipticity of the potential

εR =


2v2

c

R
+

dv2
c

dR
2v2

c

R
− dv2

c

dR


R0

εpot

reassignment of disc orbit
coordinates:


R = R0

[
1 − εR

2
cos(2Ω0t)

]
ϕ = Ω0t +

εR + εv

4
sin(2Ω0t)
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Disc growth

growth of disc mass

disc mass is grown
“adiabatically”
timescale of ∼ 1 Gyr

circular velocities
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Circularisation of the haloes
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Haloes: initially triaxial
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Discs: initially elliptical
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Circularisation of the haloes

halo 1
halo 2
halo 3

two phases of circularisation
circularisation linked to bar strength
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Elliptical versus circular discs
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Elliptical versus circular discs

initially circular disc
x

initially elliptical disc
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Bar formation causes further halo circularisation

how to check this?

compare halo shapes in the absence of bars:
1 large halo core

2 less massive disc

3 hot disc

4 rigid disc

5 artificially axisymmetric disc
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1. Large halo core

halo too susceptible to circularisation
halo completely circularised by disc growth alone
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2. Less masive discs

almost
no bars
haloes
remain
triaxial
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3. Hot discs

very weak bars
haloes remain triaxial
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4. Rigid discs

no bars at all (analytic disc potential)
haloes remain triaxial
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5. Artificially axisymmetric discs

no bars
(no non-axisymmetry)
haloes remain triaxial
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Vertical flattening

c/a also increases, but to a lesser degree
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Peanut-shaped bulges
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Halo kinematics: disc-like halo particles

peak tangential velocities

some halo particles rotate
(in a layer within |z| < 2 kpc)
rotation is less important
in triaxial models

tangential velocities
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Halo kinematics: velocity anisotropy

velocity anisotropy

haloes remain anisotropic
(even after circularisation)

velocity dispersions

Rubens Machado (IAG & LAM) “Barred Galaxies in Triaxial Haloes” thesis defense, 05/10/2010 31 / 48



Introduction Collisionless simulations Simulations including gas Summary and perspectives

Part III
Simulations including gas
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Simulations including gas

a fraction of the disc
mass is in the form of
gas
15 models: 3 halo
shapes × 5 gas
fractions
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Gas fraction

due to star formation, gas
fraction decreases over
time

gas fraction in the disc

time gas fraction
(Gyr)

0 20% 50% 75% 100%
2 7% 13% 16% 19%
5 4% 6% 8% 9%

10 3% 5% 6% 7%
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Disk, stars, gas: face-on (t=6 Gyr)
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Disk, stars, gas: face-on (t=10 Gyr)
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Disk, stars, gas: edge-on
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Halo circularisation

haloes become
more circular at all
radii
halo bar in the inner
region if stellar bar
is strong
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Different stellar ages: bar strength

disc components:
stars, young stars,
youngest stars and gas

R90
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Different stellar ages: bar strength

disc components:
stars, young stars,
youngest stars and gas
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Different stellar ages: angular momentum

disc components:
stars, young stars,
youngest stars

bar strength
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Disc vertical structure

stars
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Halo kinematics: disc-like halo particles

tangential velocities
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Part IV
Summary and perspectives

Rubens Machado (IAG & LAM) “Barred Galaxies in Triaxial Haloes” thesis defense, 05/10/2010 45 / 48



Introduction Collisionless simulations Simulations including gas Summary and perspectives

Summary

1 circular discs are not adequate IC for triaxial haloes
2 halo is circularised in two phases:

during disc growth
during bar formation

3 in the absence of a bar the halo may remain triaxial

1 presence of gas inhibts strong bars more importantly than halo
triaxiality

2 rotation of disc-like halo particles is more important in the
spherical case and is correlated do bar strength

3 triaxial haloes retaint the anisotropy of their velocity dispersions
even after being circularised
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during bar formation

3 in the absence of a bar the halo may remain triaxial

1 presence of gas inhibts strong bars more importantly than halo
triaxiality

2 rotation of disc-like halo particles is more important in the
spherical case and is correlated do bar strength

3 triaxial haloes retaint the anisotropy of their velocity dispersions
even after being circularised
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Perspectives

1 Use models for statistical study of the orbits.
2 How do gas properties (SF, feedback, etc) affect the evolution?
3 So far we have only considered isolated galaxies. It would be

interesting to study interactions with such models.
4 Similar work, but in a cosmologically-motivated setting.
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the end
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