

Simulations including gas

Summary and perspectives

Dynamics of Barred Galaxies in Triaxial Dark Matter Haloes

Rubens Eduardo Garcia Machado

advisors: Evangelie Athanassoula (LAM) & Ronaldo Eustáquio de Souza (IAG)

Universidade de São Paulo

PhD thesis defense October 5th, 2010

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Simulations including gas

Summary and perspectives

Outline of the presentation

- 2 Collisionless simulations
- Simulations including gas
- 4 Summary and perspectives

Simulations including gas

Summary and perspectives

Introduction

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

thesis defense, 05/10/2010 3 / 48

Simulations including gas

Summary and perspectives

Dark matter haloes: shapes

Cosmological simulations

- from the cosmological simulations of structure formation:
- dark matter haloes are generally triaxial
- major-to-minor axis ratio of as much as 2 is not uncommon

Collisionless simulations

Simulations including gas

Summary and perspectives

Dark matter haloes: shapes

Springel et al. (2008)

- from the cosmological simulations of structure formation:
- dark matter haloes are generally triaxial
- major-to-minor axis ratio of as much as 2 is not uncommon

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Collisionless simulations

Simulations including gas

Summary and perspectives

Haloes and barred galaxies

 What about bar formation within an elongated potential?

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Collisionless simulations

Simulations including gas

Summary and perspectives

Numerical simulations

N-body problem

 calculate force on each particle due to N - 1 other particles

•
$$F_i = \sum_{i \neq j} \frac{G m_i m_j}{|r_i - r_j|^2}$$

Simulations including gas

Summary and perspectives

Numerical simulations

N-body problem

 calculate force on each particle due to N - 1 other particles

•
$$F_i = \sum_{i \neq j} \frac{G m_i m_j}{|r_i - r_j|^2}$$

 instead, approximate far-away particles by the centre-of-mass of that cell

Collisionless simulations

Simulations including gas

Summary and perspectives

Numerical simulations

colisionless simulations

- gyrfalcON code (Dehnen 2000)
- $N \sim 10^6$ particles
- mass resolution $\sim 10^5 M_{\odot}$

Simulations including gas

Summary and perspectives

Numerical simulations

GADGET2 (Springel 2005)

- TreePM: Tree and particle-mesh
- SPH: smoothed particle hydrodynamics

Simulations including gas

Summary and perspectives

Part II

Collisionless simulations

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

thesis defense, 05/10/2010 11 / 48

Collisionless simulations

Simulations including gas

Summary and perspectives

Initial conditions: haloes

halo IC: iterative method (Rodionov et al. 2010)

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Simulations including gas

Summary and perspectives

Initial conditions: density profiles

DISC (exponential)

$$\rho_d(R,z) = \frac{M_d}{4\pi z_0 R_d^2} \exp\left(-\frac{R}{R_d}\right) \operatorname{sech}^2\left(\frac{z}{z_0}\right)$$

HALO (Hernquist)

$$ho_h(r) = rac{M_h}{2\pi^{3/2}} rac{lpha}{r_c} rac{\exp{(-r^2/r_c^2)}}{r^2+\gamma^2}$$

 $R_d = 1$ is the unit of length (say, 3.5 kpc)

Simulations including gas

Summary and perspectives

Epycicle approximation

Measure from the triaxial haloes:

- $\epsilon_{pot}(R)$: ellipticity of halo potential (as a function of radius)
- $v_c(R)$: circular velocity (as a function of radius)

ellipticity of the orbits and ellipticity of the potential

$$\epsilon_{R} = \left[\frac{\frac{2v_{c}^{2}}{R} + \frac{dv_{c}^{2}}{dR}}{\frac{2v_{c}^{2}}{R} - \frac{dv_{c}^{2}}{dR}}\right]_{R_{0}} \epsilon_{pot}$$

reassignment of disc orbit coordinates:

$$\begin{aligned} \mathbf{\hat{r}} & R = R_0 \left[1 - \frac{\epsilon_R}{2} \cos(2\Omega_0 t) \right] \\ \varphi &= \Omega_0 t + \frac{\epsilon_R + \epsilon_v}{4} \sin(2\Omega_0 t) \end{aligned}$$

Collisionless simulations

Simulations including gas

Summary and perspectives

Disc growth

Collisionless simulations

Simulations including gas

Summary and perspectives

Circularisation of the haloes

----- t=400 t=800

Rubens Machado (IAG & LAM)

Collisionless simulations

Simulations including gas

Summary and perspectives

Haloes: initially triaxial

Collisionless simulations

Simulations including gas

Summary and perspectives

Discs: initially elliptical

Collisionless simulations

Simulations including gas

Summary and perspectives

Circularisation of the haloes

halo 1 halo 2 halo 3

- two phases of circularisation
- circularisation linked to bar strength

٨V

Collisionless simulations

Simulations including gas

Summary and perspectives

Elliptical versus circular discs

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Collisionless simulations

Simulations including gas

Summary and perspectives

Elliptical versus circular discs

initially circular disc x initially elliptical disc

Rubens Machado (IAG & LAM)

Simulations including gas

Summary and perspectives

Bar formation causes further halo circularisation

compare halo shapes in the absence of bars:

- Iarge halo core
- Iess massive disc
- In the second second
- rigid disc
- artificially axisymmetric disc

Simulations including gas

Summary and perspectives

Bar formation causes further halo circularisation

- Iarge halo core
- Iess massive disc
- In the second second
- rigid disc
- artificially axisymmetric disc

Simulations including gas

Summary and perspectives

Bar formation causes further halo circularisation

- large halo core
- 2 less massive disc
- In the second second
- I rigid disc
- artificially axisymmetric disc

Simulations including gas

Summary and perspectives

Bar formation causes further halo circularisation

how to check this?

compare halo shapes in the **absence of bars**:

- large halo core
 - Iess massive disc
- In the test of test
- Irigid disc
- artificially axisymmetric disc

Simulations including gas

Summary and perspectives

1. Large halo core

halo too susceptible to circularisation

• halo completely circularised by disc growth alone

Simulations including gas

Summary and perspectives

2. Less masive discs

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Simulations including gas

Summary and perspectives

3. Hot discs

- very weak bars
- haloes remain triaxial

Simulations including gas

Summary and perspectives

4. Rigid discs

no bars at all (analytic disc potential)haloes remain triaxial

Simulations including gas

Summary and perspectives

5. Artificially axisymmetric discs

Simulations including gas

Summary and perspectives

Vertical flattening

Simulations including gas

Summary and perspectives

Peanut-shaped bulges

Simulations including gas

Summary and perspectives

Halo kinematics: disc-like halo particles

- some halo particles rotate (in a layer within |z| < 2 kpc)
- rotation is less important in triaxial models

Rubens Machado (IAG & LAM)

30 / 48

Simulations including gas

Summary and perspectives

Halo kinematics: velocity anisotropy

 haloes remain anisotropic (even after circularisation)

Simulations including gas

Summary and perspectives

Simulations including gas

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

thesis defense, 05/10/2010 32 / 48

Collisionless simulations

Simulations including gas

000000000000

Summary and perspectives

Simulations including gas

- a fraction of the disc mass is in the form of gas
- 15 models: 3 halo shapes × 5 gas fractions

Simulations including gas

Summary and perspectives

Gas fraction

10

Collisionless simulations

Simulations including gas

Summary and perspectives

Disk, stars, gas: face-on (t=6 Gyr)

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

thesis defense, 05/10/2010

Collisionless simulations

Simulations including gas

Summary and perspectives

Disk, stars, gas: face-on (t=10 Gyr)

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

thesis defense, 05/10/2010

36 / 48

Collisionless simulations

Simulations including gas

Summary and perspectives

Disk, stars, gas: edge-on

Rubens Machado (IAG & LAM)

Collisionless simulations

Simulations including gas

Summary and perspectives

Halo circularisation

Collisionless simulations

Simulations including gas 000000000000

Rubens Machado (IAG & LAM)

Collisionless simulations

Simulations including gas

Summary and perspectives

Different stellar ages: bar strength

disc components:

 stars, young stars, youngest stars and gas

Simulations including gas

Summary and perspectives

Different stellar ages: bar strength

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Collisionless simulations

Simulations including gas 0000000000000

Summary and perspectives

Different stellar ages: angular momentum

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

Simulations including gas

Summary and perspectives

Disc vertical structure

Collisionless simulations

Simulations including gas

Summary and perspectives

Halo kinematics: disc-like halo particles

 peak tangential velocities correlated to bar strength

Rubens Machado (IAG & LAM)

imulations including gas

Summary and perspectives

Part IV

Summary and perspectives

Rubens Machado (IAG & LAM)

"Barred Galaxies in Triaxial Haloes"

thesis defense, 05/10/2010 45 / 48

Simulations including gas

Summary and perspectives

Summary

circular discs are not adequate IC for triaxial haloes

- a halo is circularised in two phases:
 - o during disc growth
 - during bar formation

in the absence of a bar the halo may remain triaxial

- presence of gas inhibts strong bars more importantly than halo triaxiality
- rotation of disc-like halo particles is more important in the spherical case and is correlated do bar strength
- Itriaxial haloes retaint the anisotropy of their velocity dispersions even after being circularised

Simulations including gas

Summary and perspectives

Summary

- circular discs are not adequate IC for triaxial haloes
- Alo is circularised in two phases:
 - during disc growth
 - during bar formation

in the absence of a bar the halo may remain triaxial

- presence of gas inhibts strong bars more importantly than halo triaxiality
- rotation of disc-like halo particles is more important in the spherical case and is correlated do bar strength
- triaxial haloes retaint the anisotropy of their velocity dispersions even after being circularised

Simulations including gas

Summary and perspectives

Summary

- circular discs are not adequate IC for triaxial haloes
- alo is circularised in two phases:
 - during disc growth
 - during bar formation

in the absence of a bar the halo may remain triaxial

- presence of gas inhibts strong bars more importantly than halo triaxiality
- rotation of disc-like halo particles is more important in the spherical case and is correlated do bar strength
- triaxial haloes retaint the anisotropy of their velocity dispersions even after being circularised

Simulations including gas

Summary and perspectives

Summary

- circular discs are not adequate IC for triaxial haloes
- alo is circularised in two phases:
 - during disc growth
 - during bar formation

in the absence of a bar the halo may remain triaxial

presence of gas inhibts strong bars more importantly than halo triaxiality

- Protation of disc-like halo particles is more important in the spherical case and is correlated do bar strength
- Itriaxial haloes retaint the anisotropy of their velocity dispersions even after being circularised

Simulations including gas

Summary and perspectives

Summary

- circular discs are not adequate IC for triaxial haloes
- Allo is circularised in two phases:
 - during disc growth
 - during bar formation
- in the absence of a bar the halo may remain triaxial
- presence of gas inhibts strong bars more importantly than halo triaxiality
- rotation of disc-like halo particles is more important in the spherical case and is correlated do bar strength
- Itriaxial haloes retaint the anisotropy of their velocity dispersions even after being circularised

Simulations including gas

Summary and perspectives

Summary

- circular discs are not adequate IC for triaxial haloes
- alo is circularised in two phases:
 - during disc growth
 - during bar formation
- in the absence of a bar the halo may remain triaxial
- presence of gas inhibts strong bars more importantly than halo triaxiality
- rotation of disc-like halo particles is more important in the spherical case and is correlated do bar strength
- triaxial haloes retaint the anisotropy of their velocity dispersions even after being circularised

Perspectives

- Use models for statistical study of the orbits.
- I How do gas properties (SF, feedback, etc) affect the evolution?
- So far we have only considered isolated galaxies. It would be interesting to study interactions with such models.
- Similar work, but in a cosmologically-motivated setting.

Collisionless simulations

Simulations including gas

Summary and perspectives $\circ \circ \bullet$

the end