## **Strong Gravitational Lensing Overview, Status and Opportunities**

## Antonio C. C. Guimarães IAG-USP

IX WORKSHOP Nova Física no Espaço



Campos do Jordão, March/2010



#### Roteiro da apresentação

- fundamentos de lentes fortes
- observações: passado, presente e futuro
- fenomenologia e ciência com lentes fortes



"Do not Bodies act upon Light at a distance, and by their action bend its Rays; and is not this action strongest at the least distance?"

#### Sir Isaac Newton, Opticks, 1704







Mollerach & Roulet 2002



## **Lens Equation**

• coordinates  $\vec{\theta}$  for the image(s) and  $\vec{\beta}$  for the source(s) are related by

$$D_{\rm s}\vec{\beta}=D_{\rm s}\vec{\theta}-D_{\rm ls}\hat{\vec{\alpha}}$$

reduced deflection angle

$$\vec{\alpha} \equiv \frac{D_{\rm ls}}{D_{\rm s}} \,\hat{\vec{\alpha}}$$

gives lens equation

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}$$

true position = apparent position – deflection

$$\vec{\alpha}(\vec{\theta}) = \vec{\nabla}\psi$$
  $\psi(\vec{\theta}) = \frac{D_{LS}}{D_L D_S} \frac{2}{c^2} \int \Phi(\vec{\theta}, z) dz$ 

#### **Einstein Ring**



• deflection angle is

 $\hat{\alpha} = \frac{4GM}{c^2 b} = \frac{4GM}{c^2 D_1 \theta}$ 

lens equation becomes

$$\beta = \theta - \frac{4GM}{c^2 D_{\rm l}\theta} \frac{D_{\rm ls}}{D_{\rm s}}$$

• introducing Einstein angle

$$\theta_{\rm E} \equiv \left(\frac{4GM}{c^2} \frac{D_{\rm ls}}{D_{\rm l}D_{\rm s}}\right)^{1/2}$$

always two solutions of the lens equation:

$$\theta_{\pm} = \frac{1}{2} \left[ \beta \pm \left( \beta^2 + 4\theta_{\rm E}^2 \right)^{1/2} \right]$$

• if 
$$\beta = 0$$
,  $\theta_{\pm} = \pm \theta_{\rm E}$ 

• let 
$$D \equiv (D_1 D_s / D_{ls})$$
, then

$$\begin{aligned} \theta_{\rm E} &\approx (10^{-3})'' \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{D}{\rm kpc}\right)^{-1/2} \\ &\approx 1'' \left(\frac{M}{10^{12}M_{\odot}}\right)^{1/2} \left(\frac{D}{\rm Gpc}\right)^{-1/2} \end{aligned}$$

point mass



**1987:** The First Einstein Ring MG1131+0456: VLA, quasar radio emission lensed by a galaxy



## **1979: The First Gravitational Lens**

0957+561A,B: D. Walsh, R. F. Carswell & R. J. Weymann



FIG. 1.-Spectra of the two QSOs 0957+561 A, B obtained



 $\theta_{\pm} = \frac{1}{2} \left[ \beta \pm \left( \beta^2 + 4\theta_{\rm E}^2 \right)^{1/2} \right]$ 

#### E.E. Falco et al. (CASTLE collaboration) and NASA

#### **Circular Lens**



Mollerach & Roulet 2002

#### **Non-Circular Lens (elliptical)**



image source real position

Bartelmann

1985: Q2237+0305, Einstein Cross, Huchra et al.

#### **Giant Arcs**



Abell 2218, HST

## **Strong Gravitational Lensing Observational Status**

~ 200 galaxy-scale lenses

## **Major past and present surveys**

#### **CASTLES Survey** (~ 100 lenses) (CfA Arizona Space Telescope I Ens Survey of gravitat

(CfA-Arizona Space Telescope LEns Survey of gravitational lenses)

Complete survey of all them known galaxy-mass gravitational lens systems (those with image separations of less than 10 arcseconds)



#### http://www.cfa.harvard.edu/castles/

| # | Image             | Lens Name        | G | Z <sub>5</sub> | 21    | RA (J2000)   | Dec (J2000)  | E(B-V) | m <sub>s</sub> (mag) | mį (mag) | F <sub>GHz</sub><br>(mJy) | N <sub>im</sub> | size<br>(") | dt (days) | sigma<br>(km/s) |
|---|-------------------|------------------|---|----------------|-------|--------------|--------------|--------|----------------------|----------|---------------------------|-----------------|-------------|-----------|-----------------|
| 1 | н<br>О<br>Пара ка | Q0047-2808       | A | 3.60           | 0.48  | 00:49:41.89  | -27:52:25.7  | 0.016  |                      | I=20.05  |                           | 4ER             | 2.7         |           | 229±15          |
| 2 | н<br>Ф            | HE0047-1756      | A | 1.66           | 0.41  | 00:50:27.83  | -17:40:8.8   | 0.022  | I=16.52/2            | I=18.96  |                           | 2               | 1.44        |           |                 |
| 3 | H.                | HST01247+0352    | с |                |       | 01:24:44.4   | +03:52:00    | 0.029  | I=24.13/2            | I=21.86  |                           | 2               | 2.20        |           |                 |
| 4 |                   | HST01248+0351    | с |                |       | 01:24:45.6   | +03:51:06    | 0.029  |                      |          |                           | 2               | 0.74        |           |                 |
| 5 |                   | <u>B0128+437</u> | в | 3.124          |       | 01:31:13.405 | +43:58:13.14 | 0.082  |                      |          | F5=48                     | 4               | 0.55        |           |                 |
| 6 | <sup>H</sup>      | PMNJ0134-0931    | A | 2.216          | 0.77  | 01:34:35.67  | -09:31:02.9  | 0.031  | I=18.96/4            | I=19.31  | F <sub>5</sub> =529       | 5R              | 0.73        |           |                 |
| 7 | н                 | Q0142-100        | A | 2.72           | 0.49  | 01:45:16.5   | -09:45:17    | 0.031  | I=16.47/2            | I=18.72  | F5~1                      | 2               | 2.24        |           |                 |
| 8 | н                 | QJ0158-4325      | A | 1.29           | 0.317 | 01:58:41.44  | -43:25:04.20 | 0.015  | I=17.39/2            | I=18.91  | F <sub>8</sub> <0.2       | 2               | 1.22        |           |                 |
| 9 | н<br>•            | <u>B0218+357</u> | A | 0.96           | 0.68  | 02:21:05.483 | +35:56:13.78 | 0.068  | I=19.28/2            | I=20.06  | F <sub>5</sub> =1209      | 2ER             | 0.34        | 10.5±0.4  |                 |

# redshift

5



image separation

Kochanek 2004



#### - Einstein radii determined from HST images

#### - velocity dispersion and redshifts (source and lens) measured by SDSS

| 5056 J1403+0006 21+0.189 22+0.473  | 5055.40938+0913_21=0.190_22=0.588 | 5085 21023+4236) 21=0.391 22=0.696  | 9265-30037-0942 z1+0.195 z2+0.632     | 5055 21402+6321 21=0.205 12=0.481   | 5055 30728+3835 21=0.208 22=0.688  |
|------------------------------------|-----------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|------------------------------------|
| 5055 11627-0053 21=0.208 22=0.524  | SUSS J1205+4910 21=0.215 22=0.481 | 5055 41142+1001 21=0.222 22=0.504   | 5055 J0946+1008 21=0.222 22=0.609     | 5055 J1251-0208 21=0.724 22=0.784   | 5055 .0029-0055 21=0.227 22=0.831  |
| \$055 J1636+4707 c1=0.228 c2=0.675 | 5055 J2300+0022 e1=0.228 e2=0.463 | 5065 J1250+0523 21=0.232 22=0.795   | 5065 20959+4416 21-0.237 22-0.532     | 5065 x0956+5100 x1=0.241 x2=0.470   | 5055 J0822+2652 ±1-0.241 ±2-0.594  |
| 5085 J1621+3931 [1=0.245 ];2=0.602 | 5055_J1630+45201=0.24822=0.793    | 5055 J1112+0426 21=0.273 22=0.630   | 5065.252 082.0=22 082.0=12            | - 5055 J1020+1122 z1=0.282 z2=0.363 | 5055 J1430+4105 z1=0.205 z2=0.575  |
| \$055 J1436-0000 c1=0.285 c2=0.805 | 5055 J0109+1500 =1-0.294 =2-0.525 | SOSSU1416+5136 :1-0.298 :2-0.811    | 5055 21100+5329 (x1=0.31) ;2=0.858    | 5065 .0737+3216 _s1=0.322 _s2=0.581 | 5055_0216-0813 s1=0.332 s2=0.524   |
| 5855 3633-6003 21=0.348 22=0.467   | 5055 4030-0020 21+0.301 22+1.071  | \$D\$5.11225+3327 21=0.354 22=0.717 | 5055 J0903+4116 - 21+0.430 - 22+1.064 | 5255 .0009-004                      | 5055 30157-0036 z1 =0.513 22=0.574 |

#### SLACS: The Sloan Lens ACS Survey

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

## **Current and Future Surveys**

|        | Plenty of lenses |       |     |       |       |       |     |  |
|--------|------------------|-------|-----|-------|-------|-------|-----|--|
|        | Survey           | Depth | Res | Area  | Gal   | QSO   | Sn  |  |
| SAMe.  | SL2S             | 25    | 0.9 | 130   | 30    | 10    | -   |  |
|        | SDSS             | 21    | 1.5 | 8000  | 30    | 100   | -   |  |
|        | HST              | 26    | 0.1 | 3     | 30    | 1     | -   |  |
|        | PS1              | 22.5  | 1.0 | 30000 | 300   | 2000  | 20  |  |
|        | DES              | 25    | 0.9 | 5000  | 1000  | 100   | 1   |  |
|        | LSST             | 24    | 0.6 | 20000 | 10000 | 10000 | 600 |  |
|        | SNAP-WL          | 27    | 0.1 | 1000  | 20000 | 300   | -   |  |
| ALC: N | SNAP-SN          | 29    | 0.1 | 10    | 300   | 3     | 200 |  |

Marshall, 2008, private communication

**AND RADIO WILL PROVIDE A LOT OF LENSES TOO!** 

## **Science with Strong Lenses**

### Lens (galaxy, group, cluster) Modeling

#### • the image positions and relative fluxes can be used to constrain

- mass
- profile
- shape
- substructure



#### Comerford et al. 2006

#### **Stellar Dynamics and Lensing**

#### spherical Jeans equation

$$\frac{1}{\nu}\frac{d\nu\sigma_r^2}{dr} + \frac{2\beta(r)}{r}\sigma_r^2 = -\frac{GM(r)}{r^2}$$

$$M_L = \frac{c^2}{4G} \frac{D_l D_s}{D_{ls}} \theta_E^2$$



 $\rho(r) \propto r^{\gamma}$ 

58 strong lensing events from SLACS Sloan velocity dispersions

Guimarães & Sodré 2009

density profile slope



B1608+656 (Fassnacht et al. 2002)

time delays and magnifications

#### **Time Delay**



## **Time Delay**

light **travel time** for each image relative to a fiducial unperturbed ray

$$\tau(\boldsymbol{\theta}) = \frac{D_d D_s}{c D_{ds}} \left[ \frac{1}{2} \left( \boldsymbol{\theta} - \boldsymbol{\beta} \right)^2 - \boldsymbol{\Psi}(\boldsymbol{\theta}) \right]$$

time delay between two images, assuming a lens model (SIS),  $\Psi = b\theta$ 

$$\Delta t_{SIS} = \tau_B - \tau_A = \frac{1}{2} \frac{D_d D_s}{c D_{ds}} \left( \theta_A^2 - \theta_B^2 \right)$$

The time scales as 
$$H_0^{-1}$$

d,

because of the scalings of the distances

#### method advantages:

HUBBLE CONSTANT FROM EACH LENS SYSTEM

| Lens Name       | $h (1 \sigma \text{Range})$ |
|-----------------|-----------------------------|
| B0218+357       | 0.21 ()                     |
| HE 0435–1223    | 1.02 (0.70-1.39)            |
| RX J0911+0551   | 0.96 (0.75-1.21)            |
| SBS 0909+532    | 0.84(0.47-)                 |
| FBQ 0951+2635   | 0.67 (0.56-0.81)            |
| Q0957+561       | 0.99 (0.82-1.17)            |
| HE 1104–1805    | 1.04 (0.92-1.22)            |
| PG 1115+080     | 0.66 (0.49-0.84)            |
| RX J1131–1231   | 0.79 (0.59-1.03)            |
| B1422+231       | 0.16 (-0.36)                |
| SBS 1520+530    | 0.53 (0.46-0.61)            |
| B1600+434       | 0.65 (0.54-0.77)            |
| B1608+656       | 0.89 (0.77-1.20)            |
| SDSS J1650+4251 | 0.53 (0.44-0.63)            |
| PKS 1830-211    | 0.88 (0.58-)                |
| HE 2149–2745    | 0.69 (0.57-0.82)            |
| All             | 0.70 (0.68-0.73)            |

Oguri et al. 2007

- measures expansion rate directly at high redshifts (negligeble peculiar velocities)
- does not depend on distance ladders nor standard candle disadvantage: needs lens model

## **Statistical Lensing**

Observables:

- lens number (relates to cosmological volume and structure formation)
- image separation distribution (relates to halo mass function)

Defining quantities:

- lens cross section

$$\sigma = \pi (Einstein \ radius)^2$$

dependence

- optical depth (probability that a source bean hits a lens)

$$d\tau = n_l \sigma \frac{cdt}{dz_l} dz_l$$

$$\tau = \frac{3}{2} \Omega_L \frac{H_0}{c} \int \frac{D_l D_{ls}}{D_s} \frac{(1-z_l)^2}{(H(z_l))} dz_l$$
moving density of lenses
lens density parameter
cosmological

#### **Distribution of lens image separations**



→ maps halo mass function



Likelihood functions for the cosmological model using the velocity function of galaxies measured from the SDSS survey and a sample of 12 CLASS lenses. The contours show the 68, 90, 95 and 99% confidence intervals on the cosmological model. In the shaded regions the cosmological distances either become imaginary or there is no big bang

#### **Optical Depth for a Chaplygin gas model**

$$\begin{cases} p_{c} = -\alpha \rho_{c0} \left(\frac{\rho_{c0}}{\rho_{c}}\right)^{\alpha} \\ \rho_{c} = \rho_{c0} \left[\alpha + (1 - \alpha) a^{-3(1 + \alpha)}\right]^{1/(1 + \alpha)} \end{cases}$$



Guimarães & Lima

#### **Other areas of application** (non exhaustive)

- cluster lensing (giant arcs statistics, gravitational telescopes)
- supernovae lensing
- microlensing (planetary discovery, galactic substructure, MACHOS)



## Galaxy Cluster SDSS J1004+4112 HST ACS/WFC

Lensed Galaxy

#### Supernova Lensed Quasar