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Abstract

A model of Cosmic Inflation recently proposed by Di Marco and Notari [1] attempts to solve some of the problems of the original scenario [2]. In their model, the phase transition that drives the inflationary expansion is completed, and it is attractive because
it is based on a minimum of extra hypothesis to those of the original work. Gravitation is considered to be described by a Scalar-Tensor theory, whose action is

S =

∫

d4x
√
−g

[

1

2
(M 2 + βφ2)R− 1

2
∂µφ∂

µφ− Λ

]

.

In the proposed model, the inflationary expansion occurs in two stages: the first, de Sitter, is driven by the constant energy of the false vacuum (Λ). In the second, the dynamics is dominated by the scalar field φ, and the scale factor evolves as a power-law. This
second stage, in which the Hubble parameter decreases, is of great importance for the completion of the phase transition. The relevant perturbations of the scalar field’s energy density are generated during the de Sitter stage, though their spectral index is in
disagreement with observations. We investigate the changes that occur if these perturbations are generated during the second stage of the inflationary evolution. We obtain the necessary conditions for the spectral index to be in accordance with the observations.
Another proposal for Inflation, similar in spirit to the work of Di Marco and Notari, was made by Biswas and Notari [3]. Though similar in spirit, it opens extra possibilities that will be explored here. We also intend to adapt the bootstrap tests recently proposed
by Latham Boyle and Paul Steinhardt [4], which compares not only the model to the observational data, but also it’s predictive power!

Introduction

Inflation was designed to solve the Horizon and Flatness problems,
two questions left by the Standard Big Bang Theory. It is also in
charge of generating the perturbations that seeded the Structure
formation and are responsible for the tiny anisotropies of the CMB.
These three points will serve to constrain Inflation.

Horizon Problem

The Universe is, on large scales, homogeneous and isotropic. But,
following the standard Big Bang evolution, these regions would not
have had causal contact in order to achieve homogeneity.

Flatness Problem

Any tiny deviation from flatness at early epochs would lead to a
Universe which would hardly be flat!

Inflationary solution - General Relativity -
Guth’s model

The Universe was dominated by a scalar field (inflaton). As the
temperature cooled through a critical temperature Tc, the field be-
came trapped in its False Vacuum State, with very small Γ, the
vacuum decay rate.

Fig. 1: Behavior of the potential as the temperature drops

The energy density of the False Vacuum was a constant, leading
to exponential expansion. In some regions, the scalar field tunnels
to the True Vacuum state, then forming regions (bubbles) of True
Vacuum inside the Universe, still dominated by the False Vacuum.
The Universe keeps cooling until Ts ≪ Tc, at which bubbles of True
Vacuum begin to collide, releasing the energy initially stored in their
walls, reheating the Universe to Tr ≈ Tc.
In order to have sufficient Inflation, solving the above mentioned
problems and leaving time for the released energy from the walls to
be thermalized, we must have the inequality

r ≡ Γ

H4
≪ 1. (1)

For Inflation to get to an end, the True Vacuum regions must be
both numerous and large enough, so we need

r ≈ 1. (2)

Since H is a constant during Inflation, these conditions can’t be met!
So, the original scenario is not a satisfactory Inflationary Model.

Inflation and Scalar-Tensor Gravity - Di
Marco and Notari’s model modified

In the Scalar-Tensor theory, Gravity will be described by the follow-
ing action

S =

∫

d4x
√
−g

[

1

2
(M2 + βφ2)R− 1

2
∂µφ∂

µφ− Λ

]

. (3)

The field equations derived from this action give

H2 =
1

3M2

(

ρφ + Λ
)

, (4)

where Λ is the vacuum energy density, assumed constant. Initially,
the scalar field is subdominant, and so the Hubble parameter is con-
stant, given by

H2
I =

Λ

3M2
. (5)

While the Universe expands exponentially, driven by the vacuum
energy, the field energy density also grows exponentially and, at a
certain moment, it begins to dominate the dynamics of the expan-
sion. At this stage, the Hubble parameter is not a constant anymore,

H =
α

t
, (6)

where

α =
1 + 2β

4β
. (7)

The first stage is necessary in order to have sufficient Inflation and
solve the above Cosmological problems. The second is needed so In-
flation ends successfully. These simple features make Scalar-Tensor
Gravity a good background to study Inflation!

Constraints on the model

The amount of Inflation can be parametrized by the number of e-
folds

N ≡
∫ tend

t
H(t̃)dt̃ = ln

a(tend)

a(t)
. (8)

To solve the Cosmological problems, the initial nucleation rate must
be very small, and this value has to hold during the whole first stage
(r0 ≈ 10−7). When Inflation ends, observations show this number
is rend = 9

4π .
The second stage begins when r ≈ r0 and N = NII , so

NII ≃ −α
4

ln

[

4π

9
r0

]

. (9)

Perturbations

Observations show that perturbations on scales between 50h−1Mpc
and 3000h−1Mpc have a flat spectrum, that means, the amplitude of
the energy density perturbations are independent on the amplitude
of the field itself, when these perturbations re-enter the horizon, af-
ter Inflation. Considering that perturbations on the relevant scales
were produced during the second stage, in contrast with [1]

NII > N3000h−1Mpc. (10)

N3000h−1Mpc ≈ 63.3. Using 9 and 7, we find

β < 0.016 (11)

Considering fluctuations associated with the scalar field,

φ(x, t) = φ(t) + δφ(x, t),

and scalar type perturbations in the metric,

ds2 = −(1 + 2ψ)dt2 − χ,µdtdx
µ + a2(1 + 2ϕ)δµνdx

µdxν,

the power spectrum of the gauge-invariant combination [5] and [6]

δφϕ = δφ− φ̇
Hϕ is

P
1/2
C (k, τ ) =

∣

∣

∣

∣

H

φ̇

∣

∣

∣

∣

H

2π

Γ(ν)

Γ
(

3
2

)

[

1

2

k

aH

]
3

2
−ν

. (12)

The spectral index is then

nS ≡ 1 +
d lnPC
d ln k

= 4 − 2ν = 1 − 10β (13)

From the value of β (11), we get

nS > 0.83 (14)

In good agreement with observations!

Inflation and Scalar-Tensor Gravity - Biswas
and Notari’s model

The work of Biswas and Notari [3] starts from a similar, though more
general, lagrangian

S =

∫

d4x
√
−g

{

M2f (φ)R− 1

2
∂µφ∂

µφ− Λ

}

. (15)

where f (φ) =
[

1 + β
(

φ
M

)n]

.

Performing the conformal transformation ḡµν = f (φ)gµν
the gravitational action becomes the usual one,

S =

∫

d4x
√
−ḡ

[

M2R̄−K(φ)
(

∂̄φ
)2

]

. (16)

Re-defining the field
√

K(φ)dφ = dΦ to get a canonical kinetic term
in the action, we are left with the potential

V̄ (Φ) = Λ

[

1 − 2β

(

φ

M

)n]

. (17)

In the slow-roll approximation, using the slow-roll parameter η =

M2d2V
dΦ2 , we find the spectral index

ns − 1 ≃ 2η ≃ −0.04

(

n− 1

n− 2

)

(18)

Which leads to the prediction (n ≥ 4)

0.94 ≤ ns ≤ 0.96, (19)

in excellent agreement with the WMAP results.
So we have two possible inflationary models based on scalar-tensor
gravity. Now we are going to look at a new way of testing the infla-
tionary mechanism.

Proving Inflation: a bootstrap approach

The bootstrap approach to test Inflation, suggested by Boyle and
Steinhardt [4], is valid whenever Inflation is driven by a single scalar
field and the Hubble parameter can be expanded in a Taylor series
around the point φ∗ = 0:

H(φ) = H∗ + H′
∗φ +

1

2
H′′
∗φ

2 +
1

6
H′′′
∗ φ

3 + · · · (20)

Each term in the expansion can be related to observables in the
following manner:

H∗ =
π

(

∆2
R(k)

)1/2

2
(2r)1/2 (21)

H′
∗ =

π
(

∆2
R(k)

)1/2

8
(−r) (22)

H′′
∗ =

π
(

∆2
R(k)

)1/2

32
(2r)1/2 [r + 4(ns − 1)] (23)

H′′′
∗ =

π
(

∆2
R(k)

)1/2

128

[

64αs − 3r2 − 20r(ns − 1)
]

(24)

Each mode k∗ of the Fourier decomposition of perturbations must
satisfy the closure condition

ln

(

a0H0

k∗

)

= Nbef(k∗) − Naft. (25)

If the only known observable is the spectrum of scalar perturbations
∆2
R, the best estimate for the Hubble parameter is H(φ) = H∗+H′

∗φ.
So we derive the value of the observable r. If this is in agreement
with observations, that means the expansion up to first order is good,
so H′′

∗ = H′′′
∗ = 0, and equations 23 and 24 become predictions of

the model for these observables. If these predictions are in good
agreement with the values observed, this will be great confirmation
that the Universe underwent a period of inflationary expansion. If
the calculated value for the tensor-to-scalar-ratio is not in agree-
ment with observations, we must take the expansion to second order
H(ϕ) = H∗ + H′

∗ϕ + 1
2H

′′
∗ϕ

2. Now, a curve will result, relating the
values for the tensor-to-scalar-ratio and the spectral index.

Fig. 2: The first test is indicated by the open circle. This becomes the

dotted line if the radiation era doesn’t follow immediately from the end of

Inflation. The second test corresponds to the black solid line, transforming

into the shaded region if the transition Inflation-radiation is not

instantaneous.

Conclusions

• We modified the work of Di Marco and Notari, putting it in ac-
cordance with observations (14);

• Inflation may be successful in the context of Scalar-Tensor Theo-
ries of Gravity;

• If Inflation pass the tests proposed by [4], it will become much
harder to account its successes to other alternatives.
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