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1 Introduction

Let the the space-time metric be

g̃µν = exp(2Ω)

{ [
−N2 +

(
γijbibj

)]
exp(Ψ)bj

exp(Ψ)bi exp(2Ψ)γij

}
,
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Figure 1: Linux X Ruindows
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where the factored spatial metric is

γij =

(
A2 + σIJcJcJ exp(Σ)cJ

exp(Σ)cI exp(2Σ)σIJ

)
.

We further decompose the bi-dimensional metric σIJ as follows:

σIJ =

(
B2 + d2 Cd

Cd C2

)
.

13 metric functions: N,A, B, C,Ω,Ψ,Σ, bi, cJ , d.
This decomposition allows the control of

det(g̃) = − (NABC)2 exp (8Ω + 6Ψ + 4Σ) ,

where the usual coordinates singularities appears. Greek indices, like µ ranges
the spacetime dimensions (0..3),
lower case latin indices, like
i, ranges the space dimensions
(1..3) and the upper case latin in-
dices like I ranges the surface in-
dices (2, 3).

Note also that

det(γ) = (ABC)2 exp (4Σ) ,

det(σ) = (BC)2 .

Thus, none of the �covectors� bi, cJ , d a�ect the volume element.
These covectors are de�ned in the natural cotangent space of the manifolds

(M3, γ), (M2, σ) and (M1, 1) respectively. Some topological restrictions!
The �scale� functions of the �principal� directions have to be positive de�nite
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and bounded:
N,A, B, C > 0

The other functions may vanish but have to be bounded as well.

|Ω,Ψ,Σ, bi, cJ , d| < ∞
These choices imply the 4-vectors
along each direction 1, 2, 3 be
space-like and it cannot change
the behavior to become null or
time-like. Similarly the 4-vector
along the direction 0 is always
time-like and in�nite red-shifts
are avoided. Of course, some
of the observers will hit the cur-
vature singularities in a �nite
time and have to be discarded.
The coordinates and naked sin-
gularities are eliminated from ei-
ther the computational grid or
from the equations themselves, as
much as possible, with the aid of
the extra functions.

There are only six of dynamical functions.

Let us call dynamical functions
those which the Einstein equa-
tions give second order derivative
in time.

The initial boundary value problem for General Relativity requires the so-
lution for the constraints equations:

G̃tµ = κT̃tµ

for the dynamic functions and their �rst time derivatives.
Then the evolution equations:

G̃j
i = κT̃ j

i

evolve the dynamical functions along time. They are coupled second order in
time.

At the outer FINITE boundary we have to solve the constraints

G̃µ

normal = κT̃µ

normal

for some of the functions and their normal derivatives. This is di�erent from
the usual Dirichlet, Neuman or radiation boundary conditions.
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Let us restrit to the vacuum case:

T̃αβ = 0.

2 Numerical Analysis

2.1 Boundary Value Problem: Initial Data

2.1.1 Linearization

Our general boundary value problem can be cast as the following set of second
order quasi-linear coupled equations (gBV2oqlpdes):

Aab
dc [x] (∂a (V c

e ∂bU
e)) + Fd [(∂bU

e) , U c, x] = 0 x ∈ Ξ,

for a list of functions Ue [x] and the boundary equations:

Bd [(∂nUe) , U c, x] = 0 x ∈ ∂Ξ,

where (∂nUe) is the normal derivative of Ue [x]. We use the standard summation
on repeated indexes for the appropriate ranges. The non singular arrays A and
V are given functions of the position x; F and B are, in general, non-linear
functions of their arguments.

We start from an initial guess for the functions, and a (Newton) linearization
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around the guesses:

Ue
improved [x] = Ue

guess [x] + ue [x]

2.1.2 Discretization

The linearized di�erential equations for ue [x] go through a second order accu-
racy estimate of the integral in a adjustable �nite volume around every grid
point of Ξ and ∂Ξ.

Since the di�erencing is done in three dimensions and all mixed derivatives
are involved, we have stencils with 19 to 27 points grid point not on the bound-
ary.

On the boundary the stencils are centered on the 2 dimensional surface plus
upward or inward di�erence scheme with 6 to 12 points.

The algebraic equations are generate with Maple.

2.1.3 Linear sistem

The linear algebraic equations are solved by Gauss-Seidel methods.
The order of the linear sistem is:
[Number of functions ue [x]] x [number of points in the closed grid] ≈ 4 ×

20× 20× 10 = 16000
The number of operations for the solution of the linear problem by Gauss-

Seidel methods till the error is below 10−4 is ≈ 2 × 109. About 10 seconds of
CPU time with a single 200 MHz processor.
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Figure 2: Finire volume for diferencing:
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The process is iterated till a convergence criteria is met. Both Gauss-Seidel
and Newton iterations. For a 200 MHz cpu, each Gauss-

Seidel solution takes about 10
seconds.
There are faster solvers for spe-
ci�c linear system classes. But we
have mixed both the equations in
the grid and at the boundaries so
we can not have, in general, �xed
band matrices, for example.

2.2 Initial Boundary Value Problem: The Evolution

The initial value boundary problem can be written as the set of second order
quasi-linear coupled equations (gIBV2oqlpdes):

gβ
dc [x, t] (∂t (V c

e ∂βUe))+Aab
dc [x, t] (∂a (V c

e ∂bU
e))+Fd [(∂bU

e) , (∂tU
e) , U c, x, t] = 0,

x ∈ Ξ, t ∈ [0, T ], for a list of functions Ue [x, t] having the initial conditions:

Ue [x, 0] = fe[x], ∂tU
e [x, 0] = he[x]

and the boundary equations:

Bd [(∂nUe) , (∂tU
e) , U c, x] = 0 x ∈ ∂Ξ.

Similarly to the previous setting, the non singular arrays A and V are given
functions of x and t; F and B are, in general, non-linear functions of their
arguments and the index β allows both time and space di�erentiation.

At the moment our numerical scheme for the initial value boundary prob-
lem is a implicit, staggered, second order in time and space, �nite dif-

ference method (Crank Nicholson like schemes). For non sti� problems we
allow semi-implicit schemes with two iterations for each time step, otherwise the
tri-diagonal linear problem is combined with a Newton linearization of the non-
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linear terms with a Gauss-Seidel solver. The parameter space is considerably
large and no attempts of automatic choices were made.

The boundary equations, eventually, has to be linearized around a guess.
This is the most probable incoming of spurious modes. Even for simmetry
boundaries!

3 Grazing Black Holes

The iteration process of the boundary value problem starts with the exact so-
lution for two black holes (with conical singularities) in Weyl coordinates. See
�gures. So we prescribe, as free initial data, all the metric functions but cJ and
∂tcJ . These four functions are the unknowns of the constraint equations.

The area of the one black hole's horizon,

A ≈ M2,

can not decrease, so the coalescence of two black holes will present a jumping
in the �nal area of the horizon:

M ≈ m1 + m2A ≈ M2 > m2
1 + m2

2

3.1 Initial Data

The initial data is constructed solving the nonlinear constraint equations using
analytical exact solutions superpositions for the free initial data.
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Figure 3: Ilustration for the black hole initial data based on a particular Weyl
solution
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Figure 4: The Merger of apparent horizons in the simulations of Alcubierre et.
al. (2001)
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There remains 4 elliptical second order quasi-linear elliptical equations with
non constant coe�cients.

The are solved from an initial guess and relaxation of the elliptical equations
using �nite di�erence algebraic equations. The constraints are not solved any
further. They are used as measure of accuracy during the evolution. The
outer boundary conditions for the initial data are exact solutions of supposed
con�gurations.

The fourth order di�erences provide more accurate solutions and propagate
gravitational waves with less dispersion and damping than the second order
di�erences. However, fourth order di�erences are more unstable than second
order, particularly at late times in the evolution when large gradients develop
near the horizon.

The outer boundary conditions for the initial data are exact solutions of
supposed con�gurations: A �nal distorted black hole.

For the lapse function we chose a few variations of �1+log� slice.
For the shift vectors we use minimal distortion conditions on the factored

metric. This expensive choice results in 3 more elliptical equations which have
to be solved in every time step but it keeps the codes running longer.

3.2 Evolution

With respect to those observers the evolution equations are solved using second
order (quasi) implicit �nite di�erence/volume methods.

Richardson's extrapolations methods to show the second order of the code
and to improve the accuracy.
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At the outer boundaries we have a combination of standard Newman or
radiation conditions and up to four of the Einstein equations as constraints
on the conditions � for simplicity we either use an analytical exact solution or
�tangential� linearized Einstein equations.

For inner boundary conditions (at the holes) we damp and freeze the func-
tions close to the �singularities�.

Let m the the total ADM like mass of the isolated system. Our code, nowa-
days, is running up to about 14m with the constraints L2 violations below 1%
for a grid size of the order of m/8 in each spatial direction and a time step
equivalent to m/32. After that time spurious modes prevail. An estimate of
the amount of gravitational wave energy emitted between the time 4m and 10m

is below 10−4m . The horizons are not localized in our simulations yet. The
dimensions of our grid for a typical run is 20× 20× 10×m3.

Grid crossing time...

4 Computational Details e Conclusions

Most of our code contains Fortran 77 standard subroutines, specially for linear
algebra and ordinary di�erential equations. Several pieces of the code now are
in Fortran 95 (Lahey compiler) and in C++ (gcc compiler). For several tasks
we use Maple 7: (symbolic manipulation, code generation, grtensor, parameters
manipulation etc.). No parallel implementation yet. Our codes are directly
linked to simple graphics software (gnu-plot and octave) but we intend to use
the recent Open DX (based on IBM's Visualization Data Explorer) which can
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Figure 5: Hamitonian violation
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Figure 6: Einstein

be linked to Fortran/Linux/X11 software.
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