BLACK HOLES

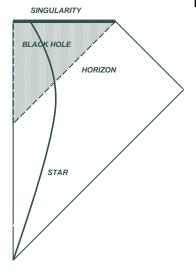
Revisit and Perspectives

George E.A. Matsas

Instituto de Física Teórica Universidade Estadual Paulista São Paulo, Brazil

Definition

BLACK HOLES are regions from where (not even) classical light signals can escape to infinity. In asymptotically flat spacetimes (\mathcal{M}, g)


$$B \equiv \mathcal{M} - J^{-}(\mathcal{J}^{+})$$

EVENT HORIZON is boundary of black hole

$$H \equiv \dot{J}^-(\mathcal{J}^+) \cap \mathcal{M}$$

Classical black holes must have singularity inside^a

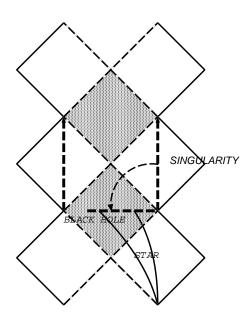
R. Penrose 1965

^a Assumes Einstein Eqs. and $T_{\mu\nu}\,k^{\mu}\,k^{\nu}\geq 0$ (k^{μ} null) (and existence of (i) non-compact Cauchy surface $\mathcal H$ and (ii) trapped surface $\mathcal T$ in $\mathcal M$)

No-hair Theorems

Preliminary hints:

- Total collapse of a spherically symmetric magnetized star leads to spherically symmetric unmagnetized black hole
 V. Ginzburg 1964
- Total collapse of chargeless, spinless and almost spherically symmetric star leads to chargeless, spinless and perfectly spherically symmetric black hole
 - A. Doroshkevich, I. Novikov, Ya. Zel'dovich 1964
- Total collapse of spinless star leads to spherically symmetric black hole


W. Israel 1967

No-hair theorem:

- Total collapse of star leads to Kerr-Newman black hole characterized by mass, charge and spin
 - B. Crater, S. Hawking, W. Israel and others

Kerr-Newman Black Holes

$$M^2 > Q^2 + J^2/M^2$$

AREA

$$A = 4\pi \left[2M^2 - Q^2 + 2M \left(M^2 - Q^2 - \frac{J^2}{M^2} \right)^{1/2} \right]$$

ENERGY

$$M^{2} = \frac{A}{16\pi} + \frac{4\pi}{A} \left(J^{2} + \frac{Q^{4}}{4} \right) + \frac{Q^{2}}{2}$$

Black Hole Mechanics

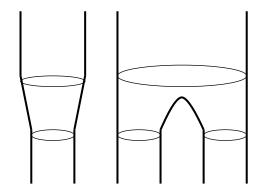
$$dM = (\mathcal{K}/8\pi)dA + \Omega dJ + \Phi dQ$$

SUPERFICIAL GRAVITY:

$$\mathcal{K} \equiv 4\pi [M^2 - Q^2 - J^2/M^2]^{1/2}/A$$

ANGULAR FREQUENCY:

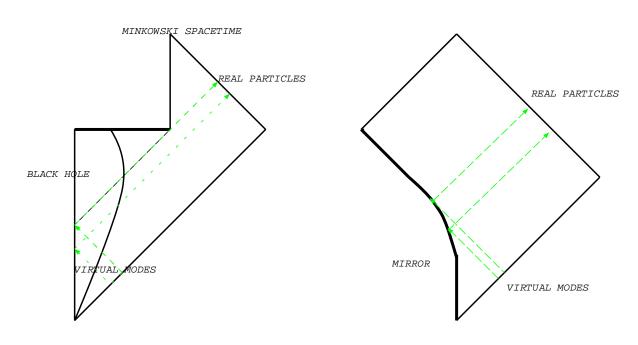
$$\Omega \equiv 4\pi J/MA$$


ELECTRIC POTENTIAL:

$$\Phi \equiv (4\pi Q/A)[M + (M^2 - Q^2 - J^2/M^2)^{1/2}]$$

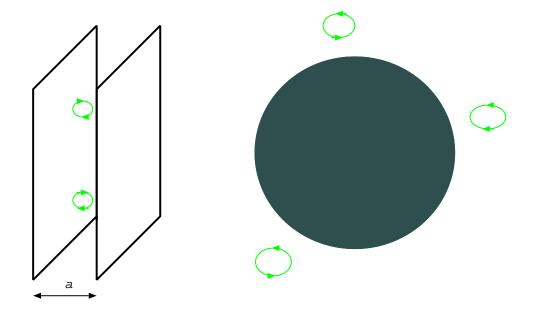
J. Bardeen, B. Carter and S. Hawking (1973)

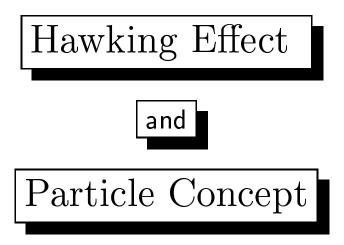
Increasing Area Theorem


Sum of event horizon AREAS of set of classical black holes DO NOT DECREASE with time^a
S. Hawking 1971

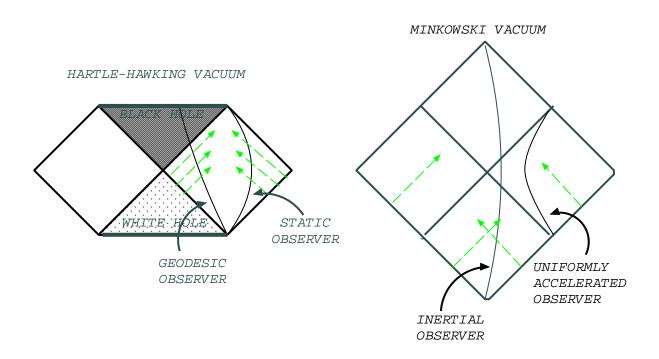
^aAssumes Einstein Eqs. and $T_{\mu\nu}k^{\mu}k^{\nu} \geq 0$ (k^{μ} null) (and strongly asymptotically predictability [no naked singularities], i.e., there is a globally hyperbolic region containing $I^{-}(\mathcal{J}^{+}) \cup H$).

Hawking Radiation

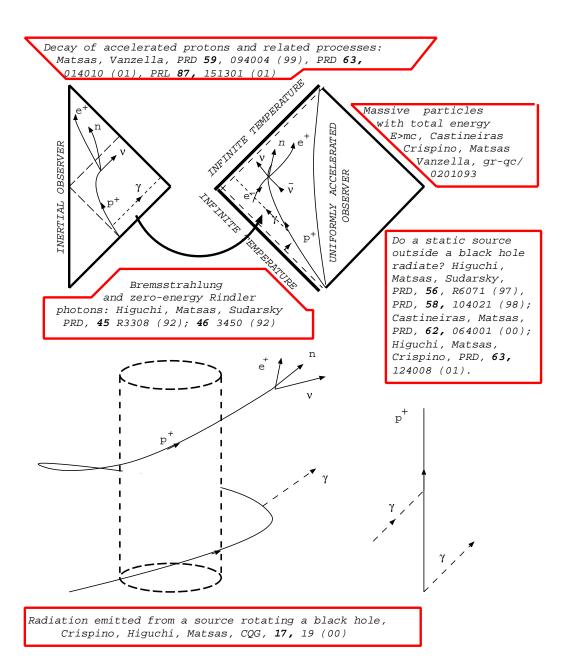

BLACK HOLES formed from star collapse radiate thermally with temperature $T = \mathcal{K}/2\pi$ S. Hawking 1974


Circunventing Classical Theorem

QUANTUM MECHANICS ABLE TO VIOLATE


$$T_{\mu\nu}k^{\mu}k^{\nu} \ge 0 \quad (k^{\mu} \text{ null})$$

Remaining (challenging) open questions: (i) Rôle of transplanckian modes, (ii) information paradox, (iii) others...


(Fulling-Davies-Unruh effect)

Remaining (challenging) open questions: None(?!)

Particle Processes

around Black Holes

Thermodynamics of Black Holes

$$M = E_{bh}; \ \mathcal{K}/2\pi = T_{bh}; \ A/4 \to S_{bh}$$

$$\downarrow$$

$$dE_{bh} = T_{bh}dS_{bh} + \Omega dJ + \Phi dQ$$

Generalized 2^{nd} Law of Thermodynamics

$$S_{\rm gen} = S + S_{bh}$$

Conjecture (J. Bekenstein 1973)

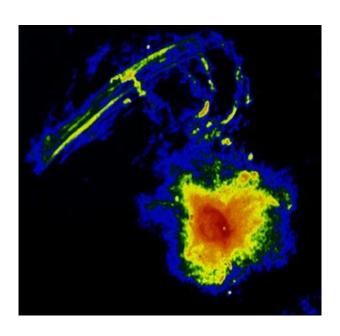
$$\Delta_t S_{\rm gen} \ge 0$$

Remaining (challenging) open questions: (i) S_{bh} from first principles(?!) (ii) $\Delta_t S_{\rm gen} \geq 0$ is really law of Nature?

"[The mystery of the quasars] allows one to suggest that the RELATIVISTS with their sophisticated work are not only magnificent cultural ornaments but MIGHT BE USEFUL TO SCIENCE"

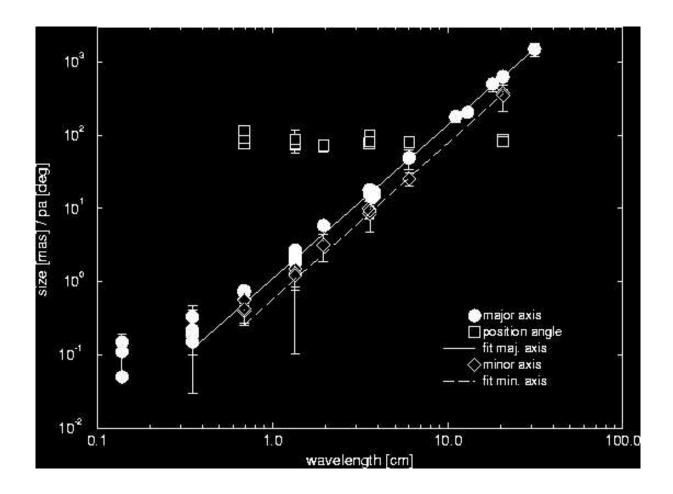
Thomas Gold – Cornell University First Texas Symposium (1963)

Observational Aspects


It could be argued that the prediction of the 'black hole' picture is simply that we will not see anything — and this is precisely consistent with observations since no 'black holes' have been seen [directly]"

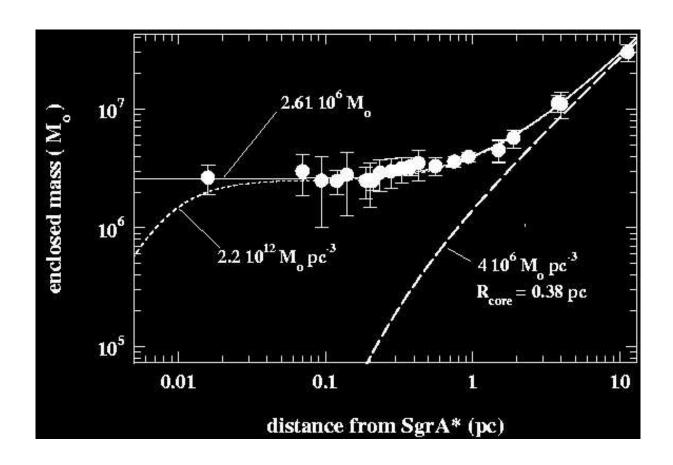
R. Penrose (1969)

- Indirect observation: Effects on surrounding matter (conclusions depends on validity of Einstein Eqs., etc)
- Direct observation: 'Observation' of the event horizon


Galactic Black Holes

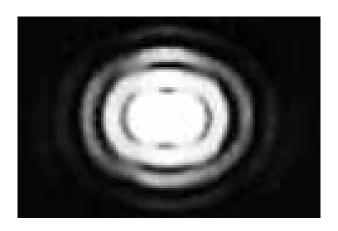
HUGE BLACK HOLES in GALACTIC CENTERS?

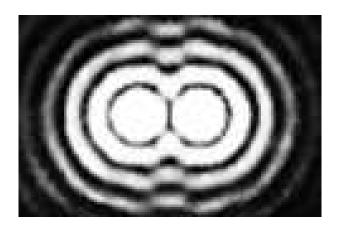
Sag A*: very (too!) bright in radio band


Compactness

Sag. A* size measured at different wavelengths of the observed radiation. Observations reaching about "twice" expected Schwarzschild radius.

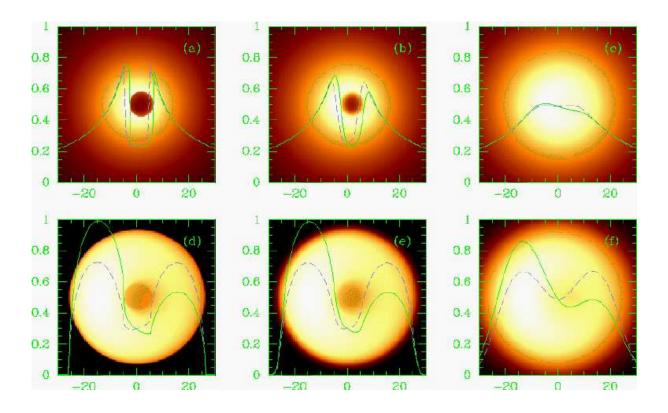
T. Krichbaum et al


Mass Distribution


Mass enclosed within certain distance from Sag. A*. Dashed lines associated with different models

A. Eckart and R. Genzel

Black Hole × Star Cluster


Low Resolution

High Resolution

Technical challenge: Reach better resolution

Event Horizon

THE FUTURE

left – un-blurred image; middle – 0.6mm wavelength observation; right – 1.3mm wavelength observation H. Falcke, F. Melia, E. Agol

Technical challenge: Reach mm-VLBI technology.

CONCLUSIONS

- Classical Black Holes are Interesting!
- Semiclassical Black Holes are Very Interesting!