Lecture 14

Stellar Atmospheres prof. Marcos Diaz
treasure map:
H\&M: pg 607
Mihalas, 1978
Rutten: pg 92
Gebbie \& Thomas, ApJ, 154, 285, 1968
Israelian \& Nikoghossian, J.Q.S.R.T, 56, 509, 1996

Basic line radiation transfer

line photons are subject to:

- pure absorption (ε)
- scattering (s superscript) ($1-\varepsilon$)
- thermal emission ('superscript)

$$
l_{L}=(1-\epsilon) l_{L}+\epsilon l_{L}
$$

(line scattering and absorption coef.)
line scattering is:

- isotropic
- complete redistribution $\left(R_{v, \phi}^{S}=\delta_{v}, 1 / 4 \pi\right)$

$$
\begin{aligned}
& \frac{\mu}{\rho} \frac{d I_{v}}{d z}=j_{L}^{t}+j_{L}^{s}+j_{C}^{t}+j_{C}^{s}-\left[k_{C}+\sigma_{C}+l_{L}\right] I_{v} \\
& d \tau_{v}=-\left(k_{C}+\sigma_{C}+l_{L}\right) \rho d z
\end{aligned}
$$

with

$$
j_{L}^{s}=(1-\epsilon) J_{v} l_{L}
$$

$$
\begin{aligned}
& \epsilon l_{L} J_{v}=\epsilon l_{L} B_{v}=j_{L}^{t} \quad \text { (line thermal emission in LTE) } \\
& j_{C}^{s}=\sigma_{C} J_{v} \\
& j_{C}^{t}=k_{C} B_{v} \\
& \frac{\mu}{\rho} \frac{d I_{v}}{d z}=\epsilon l_{L} B_{v}+(1-\epsilon) l_{L} J_{v}+k_{C} B_{v}+\sigma_{C} J_{v}-\left[k_{C}+\sigma_{C}+l_{L}\right] I_{v} \\
& \text { with } \quad \eta_{v}=\frac{l_{L}}{\left(k_{C}+\sigma_{C}\right)} \\
& \text { and } \quad \zeta_{C}=\frac{\sigma_{C}}{\left(k_{C}+\sigma_{C}\right)} \\
& \text { (line-to-continuum total abs. ratio) } \\
& \text { (scattering-to-total abs. ratio for continuum) } \\
& \mu \frac{d I_{v}}{d \tau_{v}}=I_{v}-\frac{(1-\zeta)+\epsilon \eta_{v}}{\left(1+\eta_{v}\right)} B_{v}+\frac{\zeta+(1-\epsilon) \eta_{v}}{\left(1+\eta_{v}\right)} J_{v}
\end{aligned}
$$

with $\quad \lambda_{v}=\frac{(1-\zeta)+\epsilon \eta_{v}}{\left(1+\eta_{v}\right)}$

$$
\mu \frac{d I_{v}}{d \tau_{v}}=I_{v}-\lambda_{v} B_{v}-\left(1-\lambda_{v}\right) J_{v}
$$

with

$$
B_{v}(\tau)=B_{0}+B_{1} \tau
$$

and

$$
B_{1}=\frac{C_{1}}{\left(1+\eta_{v}\right)}
$$

$$
J_{v}(\tau)=B_{0}+B_{1} \tau+\left(\frac{B_{1}-\sqrt{3} B_{0}}{\sqrt{3}}\right) \frac{1}{\left(1+\sqrt{\lambda_{v}}\right)} e^{\sqrt{3 \lambda_{v}} \tau}
$$

with

$$
\begin{array}{ll}
J_{v}(0)=\sqrt{3} H_{v}(0) \quad \text { (2-stream approx) } \\
& H_{v}(0)=\frac{1}{3}\left(\frac{B_{1}-\sqrt{3 \lambda} B_{0}}{(1+\sqrt{\lambda})}\right) \tag{1}
\end{array}
$$

1. continuum

$$
\eta_{v}=0 ; \quad \lambda_{v}=1-\zeta
$$

$$
\begin{equation*}
H_{\text {Cont }}(0)=\frac{1}{3}\left(\frac{B_{1}-\sqrt{3(1-\zeta)} B_{0}}{1+\sqrt{1-\zeta}}\right) \tag{2}
\end{equation*}
$$

2. lines

$$
\begin{align*}
& R_{v}=\frac{H_{\text {Cont }}-H_{v}}{H_{\text {Cont }}}=\frac{\left(\frac{B_{1}-\sqrt{3(1-\zeta)} B_{0}}{1+\sqrt{1-\xi}}\right)-\left(\frac{B_{1}-\sqrt{3 \lambda_{v}} B_{0}}{1+\sqrt{3 \lambda_{v}}}\right)}{\left(\frac{B_{1}-\sqrt{3(1-\zeta)} B_{0}}{1+\sqrt{1-\xi}}\right)} \\
& R_{v}=1-\frac{\left(C_{1} /\left(1+\eta_{v}\right)+B_{0} \sqrt{3 \lambda_{v}}\right)}{\left(C_{1}+B_{0} \sqrt{3(1-\zeta)}\right)} \cdot \frac{(1+\sqrt{1-\xi})}{\left(1+\sqrt{\lambda_{v}}\right)} \tag{3}
\end{align*}
$$

2.i Pure scattering lines $\&$ absence of continuum scattering
$\varepsilon=0 ; \quad \sigma_{\mathrm{C}}=0 ; \quad \zeta=0 ;$

$$
\lambda_{v}=\frac{1}{\left(1+\eta_{v}\right)}
$$

from 1 and 2:

$$
\frac{H_{v}}{H_{C}}=\frac{\frac{2 C_{1}}{\left(1+\eta_{v}\right)}+\left(\frac{12}{\left(1+\eta_{v}\right)}\right)^{1 / 2} B_{0}}{\left(C_{1}+\sqrt{3} B_{0}\right)}
$$

with $\eta\left(v=v_{0}\right)=\eta_{0} \gg C_{1} \quad\left(\frac{H_{v}}{H_{C}}\right)_{\eta_{0}} \rightarrow 0 \quad$ (dark core line)
2.ii Pure absorption lines \& absence of continuum scattering
$\varepsilon=1 ; \quad \sigma_{\mathrm{C}}=0 ; \quad \zeta=0 ;$

$$
\lambda_{v}=1
$$

with $\eta\left(v=v_{0}\right)=\eta_{0} \gg C_{1}$
from $3\left(v \approx v_{0}\right)$:

$$
\begin{array}{rlr}
R_{v}= & 1-\frac{\sqrt{3} B_{0}}{C_{1}+\sqrt{3} B_{0}} & C_{1}>0 \rightarrow \quad R_{v}>0 \\
\frac{H_{v}}{H_{C}}= & \frac{\sqrt{3} B_{0}}{\left(C_{1}+\sqrt{3} B_{0}\right)} & \\
& \text { even with } \eta_{0} \gg C_{1} \quad\left(\frac{H_{v}}{H_{C}}\right)_{\eta_{0}} \rightarrow \neq 0 \quad \text { (non-dark core line) }
\end{array}
$$

2.iii Pure absorption line \& pure continuum scattering
$\varepsilon=1 ; \quad \mathrm{k}_{\mathrm{C}}=0 ; \quad \zeta=1 ;$

$$
\lambda_{v}=\frac{\eta_{v}}{1+\eta_{v}}
$$

with $\eta\left(v \sim v_{0}\right)=\eta_{v} \gg C_{1}$
$\lambda_{v} \rightarrow 1$
from 3 and $\mathcal{v} \sim v_{0}$

$$
\begin{array}{ll}
R_{v}=1-\frac{\sqrt{3}}{2} \frac{B_{0}}{C_{1}} & \frac{B_{0}}{C_{1}}>\frac{2}{\sqrt{3}} \rightarrow R_{v}<0 \\
C_{1}=\frac{\partial B_{v}}{\partial \tau}(\tau=0) &
\end{array}
$$

(line center, more often wings or even whole line in emission for normal temperature gradient)
Schuster mechanism

