Lecture 8

stellar atmospheres prof. Marcos Diaz

treasure map:
Williams, R. ("The Analysis of Emission lines", 2009)
Gray: pg 232
H\&M: pg 144, 181, 186
Bohn-Vitense: pg 117,167
Rutten: pg 83

The line absorption and emission

I. the classical radiation driven damped oscillator:

$$
m\left(\ddot{\mathbf{d}}+\omega_{0}^{2}\right)=e \mathbf{E}_{0}(\omega)-m \gamma \dot{\mathbf{d}} \quad \text { with the classical damping constant: }
$$

$$
\gamma \equiv \frac{2 e^{2} \omega_{0}^{2}}{3 m c^{3}} \quad \text { solved for charged particle acceleration provide: }
$$

$$
\ddot{\mathbf{d}}=\dot{\mathbf{v}}=\frac{e \omega^{2}}{m} \Re \mathfrak{R e}\left[\frac{\mathbf{E}_{0}(\omega) e^{i \omega t}}{\left(\omega^{2}-\omega_{0}^{2}\right)+i \gamma \omega}\right] \quad \text { with Poynting flux: } \quad P(t)=\frac{2 e^{2} \ddot{d}}{3 c^{3}}
$$

The line absorption and emission

I. the classical radiation driven damped oscillator:

$$
\begin{aligned}
& m\left(\ddot{\mathbf{d}}+\omega_{0}^{2}\right)=e \mathbf{E}_{0}(\omega)-m \gamma \dot{\mathbf{d}} \quad \text { with the classical damping constant: } \\
& \gamma \equiv \frac{2 e^{2} \omega_{0}^{2}}{3 m c^{3}} \quad \text { solved for charged particle acceleration provide: } \\
& \ddot{\mathbf{d}}=\dot{\mathbf{v}}=\frac{e \omega^{2}}{m} \Re\left[\frac{\mathbf{E}_{0}(\omega) e^{i \omega t}}{\left(\omega^{2}-\omega_{0}^{2}\right)+i \gamma \omega}\right] \quad \text { with Poynting intensity: } P(t)=\frac{2 e^{2} \ddot{d}}{3 c^{3}}
\end{aligned}
$$

EM radiation orthogonal E and H fields with amplitude E_{0} and frequency $\omega=2 \pi \nu$ yields a randomly directed Poynting vector power:

$$
\langle P(\omega)\rangle_{\mathrm{T}}=\left(\frac{e^{4} \omega^{4}}{3 m^{2} c^{3}}\right) \frac{E_{0}^{2}}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\gamma^{2} \omega^{2}} .
$$

$$
\text { with } \mathrm{I}_{0} \equiv \mathrm{E}_{0}{ }^{2} / 8 \pi \text { and } \quad\langle P(\omega)\rangle_{T, 4 \pi}=\oint \sigma(\omega) I_{0} d \Omega \quad \text { (Poynting flux) }
$$

$$
\sigma(\omega)=\frac{\left(8 \pi e^{4} \omega^{4} / 3 m^{2} c^{4}\right)}{\left[\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]}
$$

for a free electron $\omega_{0}=0$:

$$
\begin{aligned}
& \sigma(\omega) \rightarrow \sigma_{\mathrm{T}} \equiv \frac{8 \pi e^{4}}{3 m_{e}^{2} c^{4}}=6.65 \times 10^{-25} \mathrm{~cm}^{2} \\
& \sigma_{\text {class }}=\int_{0}^{\infty} \sigma(\omega) d \omega=\frac{\pi e^{2}}{m c} \rightarrow \frac{\pi e^{2}}{m c} f \quad\left(\sigma_{\text {quantum }}\right)
\end{aligned}
$$

II. Equilibrium LTE $g f$

$$
N_{u} A_{u l}+N_{u} B_{u l} I_{v}+C_{u l}=N_{l} B_{l u} I_{v}+C_{l u}
$$

(rate equation)

With detailed balance of collisional transitions:

$$
I_{v}=\frac{A_{u l}}{B_{l u}\left(N_{l} / N_{u}\right)-B_{u l}} \quad \mathrm{LTE} \rightarrow \quad I_{v}=\frac{A_{u l}}{\left(g_{l} / g_{u}\right) B_{l u} \mathrm{e}^{h v / k T}-B_{u l}}
$$

Wien ($h v \gg k T$)

$$
I_{v} \quad \propto \quad v^{3} e^{-\frac{h v}{k T}} \quad \rightarrow \quad B_{u l}=B_{l u} g_{l} / g_{u}
$$

Rayleigh-Jeans $(h v \ll k T) \rightarrow \quad I_{v} \approx \frac{A_{u l}}{\left(g_{l} / g_{u}\right) B_{l u}-B_{u l}+\left(g_{l} / g_{u}\right) B_{l u} h v / k T}$

$$
I_{v} \approx \frac{2 k T v^{2}}{c^{2}}
$$

$$
\rightarrow \quad A_{u l}=\frac{2 h v^{3}}{c^{2}} B_{u l}
$$

$$
\sigma_{t o t}=\frac{\pi e^{2}}{m c} f_{l u}=B_{l u} h v=\frac{m c^{3}}{2 \pi e^{2} v^{2}} \frac{g_{u}}{g_{l}} A_{u l}
$$

$$
g_{l} f_{l u}=g_{u} f_{u l}=g f
$$

with $\mathrm{g}_{\mathrm{l}, \mathrm{u}}=2 \mathrm{~J}_{1, \mathrm{u}}+1$

III. Bound state quantum numbers \& selection rules

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \psi+V(x, y, z) \psi=E \psi \quad \text { with } \quad \frac{1}{\mathrm{~m}} \equiv \frac{1}{m_{N}}+\frac{1}{m_{e}}=\frac{m_{N}+m_{e}}{m_{N} m_{e}} \\
-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{Z e^{2}}{r} \psi=E \psi
\end{gathered}
$$

with $\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)$

$$
\frac{d^{2} \Phi}{d \phi^{2}}+m^{2} \Phi=0
$$

$$
\begin{aligned}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] \Theta=0, & \text { Legendre }(l, m) \\
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{l(l+1)}{r^{2}} R+\frac{2 \mathrm{~m}}{\hbar^{2}}\left(E+\frac{Z e^{2}}{r}\right) R=0 . & \text { Laguerre }(n, l)
\end{aligned}
$$

Solution for single electron systems:
$\psi_{n, l, m}(r, \theta, \phi)=A_{n, l, m} L_{n, l}(r) P_{l, m}(\cos \theta) e^{i m \phi}$
For many electron systems the energy levels are given by the quantum numbers of each electron:
n_{i} : orbit of electron i
$l_{i}: \quad$ orbital angular momentum of electron i; with $l_{i}<n_{i}\left(l_{i}=0\right.$ or " s "; $l_{i}=1$ or " p "; ...)
L : orbital angular momentum the state: vector sum of $l_{i}(L=0$ or " S "; $L=1$ or " P "; ...)
$S: \quad$ spin angular momentum of the state: vector sum of $s_{i}\left(s_{i}=1 / 2\right)$
$J: \quad$ total angular momentum of the state: vector sum of $L+S$

Spectroscopic Notation:
e.g. for a 12 electron atom: $\left(n_{i}, l_{i}\right)^{2 S+1} L_{J}$

$$
\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2}{ }^{1} S_{0}
$$

for 2 different Helium states:

$$
1 s^{2}{ }^{1} S_{0} ; 1 s 2 p{ }^{3} P_{2}
$$

Solution for single electron systems:

$\psi_{n, l, m}(r, \theta, \phi)=A_{n, l, m} L_{n, l}(r) P_{l, m}(\cos \theta) e^{i m \phi}$
For many electron systems the energy levels are given by the quantum numbers of each electron:
$n_{i}: \quad$ orbit of electron i
$l_{i}: \quad$ orbital angular momentum of electron i; with $l_{i}<n_{i}\left(l_{i}=0\right.$ or " s "; $l_{i}=1$ or " p "; \ldots)
L : orbital angular momentum of the state: vector sum of $l_{i}(L=0$ or " S "; $L=1$ or " P "; \ldots)
$S: \quad$ spin angular momentum of the state: vector sum of $s_{i}\left(s_{i}=1 / 2\right)$
$J: \quad$ total angular momentum of the state: vector sum of $L+S$

Spectroscopic Notation:
e.g. for a 12 electron atom: $\left(n_{i}, l_{i}\right){ }^{2 S+1} L_{J}$

$$
\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2}{ }^{1} S_{0}
$$

for 2 different Helium states:

$$
1 s^{2}{ }^{1} S_{0} ; 1 s 2 p{ }^{3} P_{2}
$$

from R. Williams 2017

from R. Williams 2017

from R. Williams 2017

Selection rules

$$
\begin{aligned}
& \Delta S=\left(S^{\prime}-S\right)=0^{*} \\
& \Delta L=\left(L_{l}^{\prime}-L_{l}\right)=0, \pm 1, \pm 2(E 2) \\
& \Delta J=\left(J_{l}^{\prime}-J_{l}\right)=0, \pm 1, \pm 2(E 2)
\end{aligned}
$$

i. for atom electric dipole E1(permitted) transitions:
$\rightarrow \quad$ change in parity of the wave function that describes the state
$\rightarrow \Delta l_{i}=\mp 1 ; \Delta n=a n y$
ii. for atom electric quadrupole E2 / mag dipole M1(forbidden " $[\mathrm{X}]$ ") transitions:
\rightarrow no change in parity of the wave function that describes the state
$\rightarrow \Delta l_{i}=0 ; \Delta n=0($ same eletronic config) OR one electron change $n(M 1)$

* LS coupling violation $\Delta S \neq 0 \rightarrow$ intercombination (or semi-forbidden "[X") transitions.

Atomic Energy Levels: O III ($\left.1 s^{2} 2 s^{2} 2 p^{2}\right)$

Main link for Atomic data:
https://www.nist.gov/pml/atomic-spectra-database

Grotrian Diagrams:
https://ned.ipac.caltech.edu/level5/Ewald/Grotrian/frames.html

