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São Paulo SP, Brazil

Received 2008; revised 2008

Abstract. Recent work has produced a wealth of data concerning the chemical
evolution of the galactic bulge, both for stars and nebulae. Present theoretical
models generally adopt a limited range of such constraints, frequently using
a single chemical element (usually iron), which is not enough to describe it
unambiguously. In this work, we take into account constraints involving as many
chemical elements as possible, basically obtained from bulge nebulae and stars.
Our main goal is to show that different scenarios can describe, at least partially,
the abundance distribution and several distance-independent correlationss for
these objects. Three classes of models were developed. The first is a one-zone,
single-infall model, the second is a one-zone, double-infall model and the third
is a multizone, double infall model. We show that a one-zone model with a
single infall episode is able to reproduce some of the observational data, but the
best results are achieved using a multizone, double infall model.

Key words: The Galaxy: chemical evolution – the galactic bulge – planetary
nebulae

1. INTRODUCTION

The galactic bulge has been extensively studied in the last few years, but many
of its properties and formation history are still open to discussion. Among the
main bulge characteristics that can be taken as constraints for chemical evolution
models are the metallicity distribution, the α-element relation to the metallicity,
and several abundance correlations that are distance-independent. Concerning
stellar data, such constraints have had a considerable improvement in the last
couple of years (see for example Rich and Origlia 2005, Cunha and Smith 2006,
Fulbright et al. 2006, 2007, Rich et al. 2007, Zoccali et al. 2006, and Lecureur et
al. 2007). On the other hand, nebular data have also improved, as can be seen
from our own results (Cuisinier et al. 2000, Escudero and Costa 2001, Escudero et
al. 2004, Cavichia et al. 2008). Although the chemical abundances of planetary
nebulae (PNe) can be obtained with a high accuracy for several elements that are
more difficult to study in stars, these results are often overlooked in the literature,
despite their importance as constraints for chemical evolution models of the bulge.

Regarding the bulge formation and evolution, a mixed scenario seems to be
more attractive. Since the earlier models for bulge stars that could predict ra-
tios of α-elements for bulge metallicities (Matteucci and Brocato 1990), several
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models adopting a single fast collapse have been proposed. These models are able
to explain isolated stellar abundances, but the abundance correlations for large
groups of chemical elements are generally not well reproduced. Besides, kinematic
evidences point to a bulge rotation profile similar to a disk, but including an ad-
ditional component with a larger velocity dispersion (Beaulieu et al. 2000). Some
recent models have at least partially corrected this situation, as in the theoretical
models by Ballero et al. (2006, 2007a,b). In Ballero et al. (2007b), to which the
reader is referred for a detailed discussion on previous chemical evolution models
for the galactic bulge, observational constraints such as the metallicity distribution
and α-element ratios as a function of metallicity are well reproduced, especially for
oxygen, for which a large variety of observational data is available. The authors
claim that there is no need to invoke a second infall episode, but it should be
noted that the abundance correlations taken as constraints are limited. In fact,
it has become increasingly more difficult to explain all these observations in a
satisfactory way using a single infall episode.

In this work we present single- and double-infall models for the bulge evolu-
tion, using both planetary nebulae and stellar data as constraints. The PNe data
comes basically from our own group, while for stars we have used recent data from
the literature. In order to describe the galactic bulge in a less ambiguous way, we
made an effort to include as many chemical elements as possible. Our main goal
is to show that different scenarios can describe, at least partially, the abundance
distribution and other abundance correlations for bulge objects. We show that a
one-zone model with a single infall episode is able to reproduce some of the abun-
dance distributions, but the best results are achieved using a multizone, double
infall model.

2. THE CHEMICAL EVOLUTION MODEL

2.1. The Star Formation Rate

The star formation rate (SFR) is a key factor to describe the chemical evolution
of a galaxy, as it gives the total amount of gas converted into stars, which depends
on many environmental factors, such as density, temperature, presence of winds,
tidal forces, etc. The SFR affects directly nearly all the results of a chemical
evolution model, since it modifies not only the amount of stars, but also the gas
density of the medium. Most approximations for the SFR are power laws of the
gas density, and the usual form is given by the generic Schmidt law:

SFR = c σk, (1)

where c is a constant, σ is the gas density and k a constant greater than unity. The
values of the constants c and k are usually derived empirically from observations of
spirals and starburst galaxies (Schmidt 1959, Buat et al. 1989, Kennicutt 1998a,b).
We have adopted the values derived by Kennicutt (1998b), c = (2.5± 0.7)× 10−4

and k = 1.4±0.15, so that the SFR is given in M⊙ year−1 kpc−2. In Equation (1),
σ is then the surface density, which can be related to the average volume density
of the gas. These values are generally similar to the values based on SFR derived
from Hα, UV and FIR data, as given by Buat et al. (1989), Kennicutt (1989),
Buat (1992), Boselli (1994), Deharveng et al. (1994), and Boselli et al. (1995).
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2.2. Infall

The infall rate is not a well known parameter, and depends on many factors
such as the total amount of mass, gas density and gas collisions. We can define
the infall rate as an exponential profile of the form Ṁ(t) ∝ exp(−t/τ), where τ
is the input timescale to the medium (Chiosi 1980). In spite of being a simplified
way to represent the gas increase rate, chemical evolution models have shown good
agreement when compared to observational constraints (Chiappini et al. 1997).
We can then write

Ṁ(t) = A e−t/τ . (2)

The proportionality constant can be estimated from the total amount of ma-
terial, MT :

MT = Aτ . (3)

To obtain the amount of material falling in a given time interval, the infall rate
has to be integrated as:

∆M =

∫ t+∆t

t

Ṁ(t)dt . (4)

Therefore, we have an expression for the amount of material accreted by the system
for any time interval. However, in an open system such the Galaxy, where the
halo mass can be constantly altered due to winds, accretion of satellites or other
mechanisms, it is convenient to express this value as a function of the remaining
infall mass:

MF =

∫ ∞

t

Ṁ(t)dt (5)

Combining equations (4) and (5) we have:

∆M(t) = MF

(

1 − e−
∆t

τ

)

(6)

2.3. Binary Systems and SNIa

Stars in binary systems can have a different evolutionary path compared to
individual stars. Depending on the mass and separation of the components in a
pair they can evolve to a Type-Ia supernova when one of the components reaches
the Chandrasekhar limit. The way stars combine depends on their mass ratio and
lifetime of the components, so that the number of SNIa for each mass interval of
the secondary may affect the abundances of the medium. In this work we adopted
the formalism by Ferrini et al. (1992, see also Matteucci and Greggio 1986). More
recent tratments (cf. Matteucci et al. 2006) based on the assumption that Type-
Ia SN originate from CO white dwarfs in binary systems without specifying the
degeneracy of the progenitor stars may affect the earlier star formation epochs of
the galactic halo, but the main conclusions of this paper for the bulge evolution
are probably unchanged.
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2.4. The IMF and stellar yields

Stars of different masses have different lifetimes and chemical yields. The IMF
is a necessary ingredient of any chemical evolution model, as it gives essentially
the total amount of stars in each mass interval, which basically affects the stellar
yields. In this work we used the Kroupa (2002) IMF, which provides a more
realistic distribution of objects with respect to the observational data. For the
initial period of multizone, double infall models, we also used Salpeter’s IMF, as
explained in Section 4.2. Metallicity dependent yields are still quite uncertain (see
for example Matteucci 2001, McWilliam et al. 2008), so that most applications
adopt mass-dependent yields. In this work, we have used stellar yields derived
from numerical models by van den Hoek & Groenewegen (1997) for intermediate
mass stars and Tsujimoto et al. (1995) for Type-II supernovae and SNIa.

2.5. Winds

Galactic winds are important in many chemical evolution models in order to
explain the observed abundances in dwarf and elliptical galaxies. However, a
detailed and self consistent treatment of the mass loss is too complex, as it depends
on factors such as the presence of infall, enviromental gas, external pressures,
geometrical distribution, etc. Therefore, the mass loss in the galactic bulge is
usually included as a free parameter, as in Ferreras et al. (2003). In this work, we
have adopted a similar procedure, and the wind effect was simulated by considering
that a fraction of the material ejected by SNII/Ia, considered as a free parameter,
is lost to an adjacent region, to the halo or out of the Galaxy.

3. THE OBSERVATIONAL SAMPLES

Concerning planetary nebulae, the observations and data reduction procedures
are described by Escudero et al. (2004), to which the reader is referred for details.
Observations were performed in two telescopes: 1.60 m LNA (Brasópolis - Brasil)
and 1.52 ESO (La Silla Chile) from 2001 to 2003. In both observatories, the
observations consisted in long slit spectroscopy using Cassegrain spectrographs,
with gratings of 300 l/mm and 600 l/mm respectively, resulting in reciprocal dis-
persions of 4.4 Å/pixel and 2.2 Å/pixel. Some additional data on PNe taken from
the literature are also described in the same paper. The PNe sample is contained
within about ±7 degrees in galactic latitude, to make sure that bulge nebulae only
are included. The region within about ±1 degree is underpopulated in all PNe
samples, in view of the large extinction in this region.

Regarding stellar data, several recent sets of observations of bulge stars have
also been taken into account. These comprise basically the results of Zoccali et al.
(2003, 2006, 2008), Rich and Origlia (2005), Cunha and Smith (2006), Fulbright
et al. (2006, 2007), Rich et al. (2007) and Lecureur et al. (2007). For the sake
of completeness, the set of bulge-like stars by Pompéia et al. (2003) has also been
taken into account. Since these objects may be inner disk stars, a comparison of
the results from this sample and the remaining ones may shed some light on the
apparently different evolution of the bulge and inner disk.
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4. MODELS

4.1. One-zone models

Two kinds of one-zone models were elaborated: single and double infall models.
Table 1 displays the input parameters adopted for these models. The parameters
in columns 2 and 3 are not free parameters, and were derived independently of the
chemical evolution: M1, the mass of the first infall, corresponds to the mass of the
spheroidal component as derived by Amaral et al. (1996); M2, the mass of the
second infall, corresponds to the mass of the discoidal component, within the first
1.5 kpc, and was calculated based on the disk radial density profile. Regarding the
infall timescales (τ1, τ2) and the wind rate W , estimates of the parameter space
were made on the basis of model calculations by Mollá et al. (2000). The results
for τ1, τ2, and W are shown in columns 4–6 of Table 1, respectively.

Table 1. Parameters for the one-zone models.

Model M1 M2 τ1 τ2 W
(M⊙) (M⊙) (Gyr) (Gyr)

Single 1.24E10 - 1.0 - 40%
Double 1.24E10 2.26E9 0.1 2.0 60%

4.2. Multizone double-infall model

The multizone model is based on a mixed scenario for the bulge evolution.
To reproduce the abundance distribution and the correlations between elemental
abundances, the adopted model has two main phases: the first one is a fast collapse
of the primordial gas, essentially responsible for the bulge formation, and the
second is a slower infall of enriched gas that forms the disk. The bulge and central
region of the Galaxy were divided into two zones (cf. Table 2), the first one
experiencing two gas infall episodes, a 0.1 Gyr collapse and an enriched gas infall
lasting 2.0 Gyr, as in the previous models of Table 1. Such a division into two
zones was chosen as it reproduces in a more realistic way the galaxy evolution
scenario of a first infall forming the central region (zone-0 in the present model)
and a second one, of enriched gas, to form the disk. The zones have been divided
into concentric rings of radius R1, R2 at 1.5 kpc intervals, as shown in Table 2.
The infall masses are also given in the table, where the second infall mass was
derived from the disk density (Rana 1991).

Table 2. Parameters of the multizone model.

zone R1 (kpc) R2 (kpc) M1(M⊙) M2(M⊙)

0 0.0 1.5 1.24E10 2.26E9
1 1.5 3.0 0 4.75E9

To better reproduce the chemical abundances for low mass objects, the bulge
evolution was divided into two periods with a different IMF. The duration of each
period was selected in order to achieve a best fit when comparing model predictions
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to the observational data. Based on hydrodynamical simulations (Samland et
al. 1997), we assumed that, at the beginning of the bulge formation, a large
amount of the elements produced by SNe can be ejected to the halo and inner
disk. Investigations on the variation of the slope of the IMF with respect to
physical parameters of the ISM show that it can depend both on the metallicity
(Silk 1995) and on temperature and density (Padoan et al. 1997). At the beginning
of the bulge formation, the bulge ISM was dense and probably had high velocity
dispersion. Adopting this hypothesis, Salpeter’s IMF was used in the first 0.6
Gyr, and then Kroupa’s IMF for the rest of the evolution. For the first period,
we adopted Salpeter’s IMF, assuming that 85% of the elements produced by SNe
are ejected for the halo and inner disk, 70% of which are ejected out of the bulge
and 15% from zone 0 to zone 1. For the subsequent evolution we adopted the
Kroupa (2002) IMF with a wind rate of 60%, divided in 45% of which are ejected
to outside the bulge and 15% from zone 0 to zone 1. It should be noted that,
since zone 1 is formed only by the second gas infall, it does not experience the first
period effects.

5. RESULTS

5.1. Abundance distributions of α-elements

Figure 1 displays the chemical abundance distributions of O, Ar, S and Ne
for bulge PNe (histograms) compared to the model predictions. The abcissae
show the abundances by number of atoms of each element X, defined as ǫ(X) =
log(X/H)+12, and the ordinate gives the fraction of objects in the whole sample. In
this figure, red lines represent one-zone models: continuous red lines for single infall
models and dashed red lines for models with double infall. Black lines represent
two-zone models as follows: black continuous lines for the central region (zone 0)
and black dashed lines for the outer region (zone 1).

It can be seen that the observed oxygen abundance distribution shows a good
agreement with both classes of models. Oxygen abundances in PNe reflect the
interstellar abundances at the time the progenitor stars were formed, although a
small depletion may be observed due to ON cycling for the more massive progen-
itors. Results for one-zone and multizone models do not differ strongly, except
that zone 1 of the multizone model is more metal rich than zone 0, as expected.
A similar effect is apparent for argon and neon. The agreement of the model and
observational data in Figure 1 is generally reasonable, considering the simplicity
of the models and the fact that the data samples are incomplete. The largest
discrepancies between the models and the observed distributions occur for neon,
in which case the observed abundance distribution peaks about 0.2 dex higher
than predicted. This is typically the expected uncertainty of the data, which can
explain the discrepancy, along with the simplicity of the model, as mentioned.

The argon and sulfur data produce a generally better agreement with the mod-
els. In the one-zone, one infall model, an infall timescale of 1.0 Gyr was adopted,
which makes most of the SNII to be produced in a short time interval. As a
consequence, oxygen and neon are also produced in a short time interval, rapidly
enriching the ISM. Argon and sulfur, on the other hand, are also produced by
SNIa, taking a longer time to be ejected to the ISM with respect to SNII yields.
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This effect can be seen in the figure, where the solid red lines show a smaller
fraction of enriched material in S and Ar as compared to the dashed red line.

The small differences between model results for the abundance distributions
can be an indication that, in the case of PNe, we are observing preferentially
objects coming from the first collapse. Most of the objects in the sample are
found in relatively high latitudes, which supports this hypothesis.
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Fig. 1. Abundance distribution of α-elements derived from PNe (histograms)
compared to model predictions. The abcissae show the elemental abundances

ǫ(X) = log X/H + 12. Results for one-zone models are shown as red lines: single
infall (red continuous lines) and double infall (red dashed lines). For clarity,
these models are labelled as “1”. Results for multizone models are shown in

black: central region (region 0, black continuous lines) and outer region (region
1, black dashed lines).

From Figure 1 we already have an indication that the one-zone models con-
sidered in this paper are not able to completely reproduce the observational data.
Although a general agreement is achieved, the distributions generally do not match
all the observations. In particular, the need of more complex models is apparent
from the neon data shown in Figure 1, where the multizone model produces an
improved agreement. Such a need is reinforced when one tries to increase the ob-
servational constraints by analyzing distance independent abundance correlations,
as we will see in the following sections.
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5.2. Metallicity distribution in the bulge

Another important constraint of chemical evolution models for the bulge is the
observed metallicity distribution of bulge stars, as measured by the [Fe/H] ratio.
Iron abundances cannot be accurately derived from PNe, since the corresponding
lines are very weak and the abundances eventually derived are hampered by the
fact that a significant fraction of this element is locked up in grains (cf. Perinotto
et al. 1999). Therefore, our predicted metallicity distribution for the bulge, as
shown in Figure 2, should be compared with recent determinations of the [Fe/H]
metallicity distribution in bulge stars. Such a determination has been provided by
Zoccali et al. (2003), based on a combination of near-IR data with optical data.
As shown by the histogram of Figure 2, the Zoccali et al. (2003) distribution
peaks at near solar value, with a sharp cutoff just above the solar metallicity,
and presenting a tail towards lower metallicities down to approximately −1.5 dex.
These characteristics are generally well reproduced by our models, particularly in
the case of the multizone model.
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Fig. 2. (Left) Metallicity distribution of bulge stars (Zoccali et al. 2003,
histogram) and model predictions. Symbols are the same as in Figure 1.

Fig. 3. (Right) The [O/Fe] × [Fe/H] relation from our models compared to
observational data (see text). Model symbols are the same of Figure 1.

More recently, the bulge metallicity distribution was determined by Rich and
Origlia (2005) and Rich et al. (2007) based on infrared spectroscopy of M giants in
Baade’s Window and in the inner bulge. Although the samples are relatively small,
they both agree in the sense that the distribution peaks about [Fe/H] ≃ −0.2, in
good agreement with the prediction of our multizone model shown in Figure 2.
The metallicity distribution of K giants in Baade’s Window has also been derived
by Fulbright et al. (2006) based on Keck HIRES spectra, with the result that the
metallicities range approximately from [Fe/H] ≃ −1.3 to +0.5, peaking around
[Fe/H] ≃ −0.10, again near solar value, in agreement with the results previously
mentioned. Also, a new recalibration of previous data shows essentially the same
characteristics, namely a peak near solar value and a tail towards lower metallicities
(see Fulbright et al. 2006 for details). Finally, Zoccali et al. (2008) have presented
a detailed metallicity distribution in three fields of the galactic bulge based on 800
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K giants using for the first time high resolution spectroscopy of individual stars.
The iron distribution function (IDF) for the field b = −6o is roughly similar to
the photometric distribution of Zoccali et al. (2003) which is shown in Fig. 2, but
extends to slightly larger metallicities, by about 0.2 dex, and presents an excess
of objects with metallicities at both sides around -1 dex. As can be seen from
Fig. 2, our models have just the same characteristics, extending to slightly higher
metallicities than the previous data of Zoccali et al. (2003), and in fact presenting
some excess around -1 dex. Therefore, we may conclude that our models, especially
the multizone models, show a quite reasonable agreement with recently derived
metallicity distributions of bulge stars.

It is interesting to compare the metallicity distribution of Fig. 2 with data
from bulge-like stars by Pompéia et al. (2003). The metallicity distribution of
these stars is similar to the distribution of true bulge stars, in the sense that it
peaks slightly below solar and shows a tail at lower metallicities. This supports
the conclusion by Zoccali et al. (2003) and Fulbright et al. (2006) that there is
no evidence of any major abundance gradient in the inner bulge, but it should
be noted that Zoccali et al. (2008) found some indication of a small gradient
in larger fields, and suggested a double-component structure comprising an inner
pseudo-bulge within an outer classical bulge.

5.3. [α/Fe] correlations with metallicity

The metallicity dependence of the [O/Fe] ratio of bulge stars is possibly the
single most important constraint of chemical evolution models regarding abun-
dance correlations. Figure 3 compares our model predictions for this relation in
the galactic bulge with data for bulge stars taken from different sources: Barbuy
& Grenon (1990) [triangles], Cunha & Smith (2006) [stars], Fulbright et al. (2007)
[squares], Lecureur et al. (2007) [diamonds], Rich & Origlia (2005) and Rich et
al. (2007) [crosses]. Model symbols are the same as in Figure 1. These objects
are believed to define the behaviour of the [O/Fe] × [Fe/H] relation in the galac-
tic bulge with a reasonable accuracy, as they include recent, accurate abundance
determinations.

It can be seen that the multizone model shows a good fit to the observational
data, with a clear improvement relative to the one-zone models. In this case, the
difference between our two types of models is much larger than, for instance, in the
case of the abundance distribution of PNe data shown in Figure 1. This is a strong
indication that a more complex model for the bulge evolution is required. Another
feature of our models that is supported by the observations is the relatively low
[O/Fe] ratio predicted at low metallicities, in contrast with the models by Ballero
et al. (2007b), in which a value of [O/Fe] ≃ 1 is obtained. In Figure 3 we also plot
the sample of bulge-like stars by Pompéia et al. (2003) [circles]. As in the case of
the metallicity distribution (Figure 2), there is no appreciable differences between
this sample and the remaining ones, which consist of true bulge stars.
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Fig. 4. [Si/Fe] and [Mg/Fe] as a function of [Fe/H] for bulge stars. Symbols are
as in Figure 3.

Other α-elements also show a similar behaviour with metallicity as shown in
Figure 4 for the ratios [Si/Fe] and [Mg/Fe]. The symbols are the same as in
Figure 3 and the same comments regarding our models apply here. The agreement
is reasonable, taking into account that the intrinsic dispersion of the data is much
higher. Although these ratios are not as well determined as in the case of oxygen,
it is interesting to note that the multizone models show a comparatively better fit
to the data than the single zone models.

5.4. Abundance correlations in PNe: O, Ne, S, and Ar

Distance independent correlations of chemical abundances of elements that are
not manufactured in the PNe progenitor stars also provide interesting constraints
for chemical evolution models, a procedure already successfully used in the galactic
disk. Figure 5 shows correlations with oxygen of the Ne, S, and Ar abundances.
It can be seen that both classes of models are able to explain reasonably the ob-
served correlations, taking into account the average uncertainties of the abundance
determinations, which may reach about 0.2 to 0.3 dex.
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Fig. 5. Distance independent correlations of the abundance of Ne, S, and Ar
compared to model predictions. Models symbols are as in Figure 1.

5.5. Nitrogen abundances

Nitrogen is an interesting element, in the sense that its abundance can be ac-
curately determined in PNe, in the same way as oxygen. The main difference is
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that part of the observed nebular abundances is probably due to the dredge-up
episodes occurring in the PNe progenitor stars, which must be taken into account
when interpreting N abundances. The N enhancements are modest, and are espe-
cially important in the so-called Type I PNe (Peimbert 1978), which comprise a
rather small fraction of the observed nebulae. This is recognized for example in
the recent models for the bulge by Ballero et al. (2007b), where a sample of bulge
PNe was taken into account. Moreover, it has long been known from disk PNe
that the N-rich objects have usually ǫ(N) = log(N/H) + 12 > 8.0 (cf. Faúndez-
Abans and Maciel 1987), and these objects belong to the high mass end of the
intermediate mass stars that originate the PNe, which comprises a relatively small
fraction of all PNe progenitor stars. Most of these objects have N-enhancements
of a few tenths in the logarithmic scale, while the average N abundance of PNe
is about ǫ(N) ≃ 8.0. Therefore, it is expected that most PNe in the bulge have
approximately normal N abundances, a result fully supported by our previous data
(Cuisinier et al. 2000, Escudero and Costa 2001, Escudero et al. 2004), so that N
could be used – although cautiously – in the comparison with theoretical models,
an approach taken by Ballero et al. (2007b).
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Fig. 6. (Left) Abundance distribution of nitrogen compared to model
predictions. Symbols are the same as in Figure 1.

Fig. 7. (Right) The same as Figure 5 for nitrogen. Here the multizone model is
displayed as black thick lines for the van den Hoek & Groenewegen (1997) yields,

black thin lines adopting no yields for N and O for stars with masses smaller
than one solar mass and black dotted lines for zone 1.

In Figure 6 we show the observed N abundance distribution along with the
theoretical models. Symbols are the same as in Figure 1. We confirm that N
abundances peak around ǫ(N) ≃ 8, within the uncertainties, comparable to the
disk distribution. The distribution falls abruptly towards higher N abundances,
confirming that few objects are strongly N-enhanced and that there is no strong
evidence for a recent star formation in the bulge, which would produce many
young, massive stars with a high N-enhancement. The nitrogen abundances de-
rived from both models are similar, the multizone models producing a slightly
better fit to the data in spite of presenting a narrower distribution with respect
to the observational data, and taking into account the probable incompleteness of
the observational sample.
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In Figure 7 we show the distance-independent correlation of ǫ(N) as a function
of ǫ(O) for bulge PNe, which may be compared with Figure 5. Here the black
thick lines represent results derived using van den Hoek & Groenewegen (1997)
yields and thin black lines represent results derived adopting no yields for nitrogen
and oxygen for stars with masses smaller than one solar mass. In these plots the
different symbols refer to PNe from different data samples (see Escudero et al.
2004 for details).

From Figure 7 it can be seen that both models are able to reproduce reasonably
well most of the data. It can be seen that there is a large scatter in the oxygen
abundances for objects with low nitrogen abundances. This scatter can be repro-
duced assuming that winds produced by SNe of types II and Ia are responsible
for the loss of elements synthesized by the SNe, leading to a chemical enrichment
of heavier elements such as oxygen and iron relative to lighter elements such as
nitrogen and helium. There is also a large number of objects with high oxygen
abundances, but with low nitrogen. All one-zone models or those with only pri-
mordial gas infall cannot describe this population, which may indicate that these
objects originate from an already oxygen-enriched medium. Since it is produced
mainly by SNII, this result suggests that this population was formed in an epoch
where the gas was already enriched by material ejected by stars with short life-
times in a medium not yet enriched with elements produced by longer lifetime
stars, like nitrogen.

6. DISCUSSION

From the results presented in the previous section, there are several evidences
in favour of a multizone, double-infall model for the evolution of the galactic bulge,
in comparison to a less complex model. In fact, double-infall models have been
successfully used to build chemical evolution models for the galactic disk. For
example, in the scenario devised by Chiappini et al. (1997), the first infall (with
1.24 × 1010M⊙ and 0.1 Gyr timescale) would be responsible for the formation of
the old stellar population detected throughout the bulge, and the second episode
would represent the gas infall that formed the disk (with 2.26× 109M⊙ and 2 Gyr
timescale), beginning 2 Gyr after the first one. In this model the formation of
the bulge is included in the first infall episode forming the halo, and the second
infall episode is applied to the disk, while our model assumes two infall episodes
to explain the observed properties of the bulge. Any chemical evolution model for
the bulge must have a large gas infall episode at the beginning of its formation, in
order to reproduce the old population present in that region.

An important observational constraint to the hypothesis of a second infall
episode is the presence of an intermediate mass population in the bulge, seen
either as PNe or stars (van Loon et al. 2003), since these objects would result
directly from the second infall. Observational evidences of a central bar (Bissantz
& Gerhard 2002) also favour the hypothesis of a second infall. Therefore, we
developed also a double-infall model to better reproduce the observed chemical
abundance pattern. In this model we assume that 2% of the mass for the objects
between 3 and 16 M⊙ generate binary systems that eventually will become SNIa.
Yoshii et al. (1996) derived values between 2% and 2.5% when assuming Scalo
(1986) IMF and values between 5% and 5.5% adopting Salpeter’s IMF. Adopting
Kroupa’s (2002) IMF, which is very similar to that by Scalo, a value of 2% is
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obtained, consistent with disk data.
The galactic bulge had its first star formation episode resulting from a collapse

of primordial gas. This episode is a consensus among the recent star formation
models. The need of this initial scenario is based not only on results from chemical
evolution models but mainly on observational data. Among these is the presence
of a large number of old objects, which requires the existence of an extensive star
formation at the beginning of the galactic evolution. Also, the wide metallicity
distribution found in stars and PNe has to be taken into account. According to
the present model, a fast gas collapse is more efficient to form a wide range of
metallicities than a slow infall process. A third observational constraint is the
presence of old, metal rich stars. An abrupt collapse is able to rapidly enrich the
gas, generating both metal-poor and metal-rich stars.

The main characteristics of the first infall is a large mass loss to the outer
regions such as the halo, disk or even out of the galaxy, produced by SNII/Ia.
This loss of metals is essential to reproduce the observed abundance distributions
of PNe. This is also a consensus among the evolutionary models for the bulge.
Without this process, stellar abundances would be higher than observed. From
our results, the fraction of ejected gas cannot be defined exactly, due to multiple
assumptions in the model input. However, it is clear from our results that the
multizone model reproduces better the observational constraints. To define this
fraction accurately, as well as its time dependence, more accurate observational
data and more realistic hydrodynamical models for the central region are required.

The fate of the ejected material is not clear. Samland et al. (1997) suggest that
this material was ejected to the halo and eventually fell onto the disk. These au-
thors are able to reproduce different chemical properties of the interstellar medium
and the disk. However, one of their conclusions is that the abundance gradient
only begun after 6 Gyr, in contradiction to the results from PNe and open clus-
ters (cf. Maciel et al. (2003, 2005, 2006, 2007; Friel et al. 2002), that show the
existence of an expressive gradient at that epoch. In the present work, we adopt
radial fluxes produced by SN, whose displacement are restricted to the adjacent
zone at 1.5 kpc. With this assumption we were able to explain the presence of
oxygen-rich and nitrogen-poor planetary nebulae in the bulge.

6. CONCLUSIONS

We developed three classes of models to reproduce the abundances of the PNe
population of the galactic bulge, representing the chemical evolution of its inter-
mediate mass population, as well as recent data on bulge stars. An effort was
made to increase the amount of observational constraints to be explained by the
models, so that their reliability is enhanced even though the agreement with the
observations might not be perfect. The model results were compared to recent
observational data of PNe and stars, leading to the following conclusions: (i) Most
of the abundances can be reproduced assuming a fast initial collapse with a high
wind rate (ii) Some peculiarities found in the abundances of PNe and bulge stars
require the existence of a second infall of material previously enriched by SNII
ejecta, and (iii) Abundance ratios from stars (α/Fe) suggest that, at the begin-
ning of the bulge formation, the IMF was steeper. The best way to describe it is
to assume Salpeter’s IMF for the initial 0.6 Gyr and Kroupa’s for the rest of the
evolution.
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