Cosmology with Large Galaxy Redshift Surveys: introducing JPAS

Laerte Sodré Jr.

Departamento de Astronomia Instituto de Astronomia, Geofísica e Ciências Atmosféricas Universidade de São Paulo

I COSMOSUL Observatório Nacional, RJ 1-5/08/2011

What is a galaxy redshift survey?

Aim: 3-D maps of galaxy distribution

 Why? The values of the cosmological parameters are "printed" in the galaxy distribution; use 3-D maps to study cosmology!

Added Value: The "spectra" required to estimate distances are also informative on galaxy properties

What is a galaxy redshift survey?

 Galaxy redshift surveys allow to test and advance the cosmological paradigm with observations of the universe in its largest scales

What is a galaxy redshift survey?

Aim: 3-D maps of galaxy distribution

Data analysis is challenging! But what we get is very different:

Outline:

- Where do we live?
- Structure formation
- Cosmological observables in surveys
- Cosmology with galaxy redshift surveys
- The data challenge
- Cosmology with photometric redshifts
- JPAS

Where do we live?

- Here! In a \(\Lambda \text{CDM universe!} \)
- Cosmological paradigm @2011:
- universe (within a multiverse?) with:
- zero curvature
- dominated by dark energy (73%)
- containing dark matter (23%)
- and a bit of barions (~4%)
 (in units of the critical density)

Where do we live?

• the ACDM model explains very well the universe in its largest scales

 the A component is responsible for accelerating the universe

 dark matter is necessary to explain galaxy dynamics and formation

Structure Formation: the recipe

- In the ΛCDM model the large scale of the universe can be determined from:
- the values of the cosmological parameters; mainly the content of Dark Matter
- the mechanism by which structures grow: gravity

the initial conditions (statistical distribution of density)

fluctuations)

Structure Formation: initial conditions

 Hypothesis: structures grow from density fluctuations by gravity

Seeds: primordial density fluctuations:

quantum fluctuations produced during *inflation*

Structure Formation: the radiative era

 in the beginning the universe is a hot plasma, with photons coupled with baryons (protons) and electrons

 dark matter halos can form by gravitational collapse of density fluctuations

 hierarchical scenario: DM halos grow through mergers with other halos

Structure Formation: BAOs

density fluctuations in the baryon-photon plasma are attracted by the DM halos but the radiation pressure of the compressed plasma avoids their capture

as a consequence, the photon/baryon density fluctuations expand as sound waves, with velocity

 $v \sim c/3^{1/2}$

these oscillations are known as Baryon Acoustic **Oscillations (BAOs)**

Structure Formation: BAOs

The photon-baryon plasma cools as the universe expands and by

z ~1000 (t ~ 400 Myr) it is cold enough to allow the formation of atoms: the epoch of recombination

the universe becomes electrically neutral: photons and baryons decouple and the photons are free to travel

this expansion of the sound waves is halted at the recombination, when they have a radius I ~ c/31/2 t ~ 150 Mpc (in comoving units)

Structure Formation: BAOs evolution of the density profile p(r)r²

Perturbation 000

Profile 0008

100

Radius (Mpc)

 after recombination the universe becomes neutral and the baryons can fall onto dark matter halos

Dark Matter, Gas, Photon, Neutrino 23.4 Myrs z=79

Ball Matter, Gas, Photon, Neutrino 23.4 Myrs z=79

Radius (Mpc)

 There is an excess of probability that a galaxy will be found at ~150 Mpc from another!

The BAO scale is a standard rule: useful to test cosmological models

BAOs as cosmological observables

- The BAO scale is printed in the galaxy distribution:
 - there is a probability above the mean in finding a galaxy at ~150 Mpc of a bright galaxy
- The BAO scale- a standard rule- can be measured either in the transversal or radial directions
- The measurement of radial BAO requires well determined radial distances

BAOs as cosmological observables

- detection of transversal BAOs in the SDSS survey
- Two-point correlation function of galaxy pairs:
 the expected number of galaxies within a volume dV at a distance r of another galaxy is dN = n[1 + ξ(r)] dV where n is the mean density

BAOs are *printed* in the large scale structures

 in the cosmic microwave background

in the nearby galaxy distribution

- Power spectrum of the galaxy distribution
- Galaxy clusters
- Weak lensing tomography
- SN la
- Peculiar velocity fields

 Power spectrum of the galaxy distribution

Galaxy clusters

A2744

 Weak lensing tomography of the cosmic shear

 SN la: standard candles detection depends on the cadence of the survey

- Peculiar velocity field
- $V = H_0 D + V_{pec}$
- V_{pec} depends on the matter distribution

Large scale redshift surveys are useful for many things:

- estimation of cosmological parameters
- estimation of the sum of neutrinos' mass
- test of the theory of gravitation
- Investigation of galaxy formation and evolution
- •

Cosmological Parameters

$$w = -0.94 \pm 0.1$$

- neutrino masses: estimation from the power spectrum of galaxy distribution
- neutrino free-streaming suppress the growth of structures
- Thomas et al. (2010):
 Sum of neutrino mass eigenstates:
 < 0.28 eV

$\sum m_{\nu}$ (95% CL) Analysis
< 1.271 eV	WMAP5
$< 0.695 \mathrm{eV}$	WMAP5 + SNe + BAO
< 0.651 eV	WMAP5 + MegaZ
< 0.393 eV	WMAP5 + SNe + BAO + Mega $Z_{(\ell_{200})}$
< 0.344 eV	WMAP5 + SNe + BAO + Mega $Z_{(\ell_{200})}$ + HST
< 0.325 eV	WMAP5 + SNe + BAO + MegaZ
< 0.281 eV	WMAP5 + SNe + BAO + MegaZ + HST
< 0.491 eV	WMAP5 + SNe + BAO + Mega $Z_{(\ell_{200})}$ + HST
$< 0.471 \mathrm{eV}$	WMAP5 + SNe + BAO + MegaZ + HST

- Tests of theory of gravitation:
 - two different phenomena depend in very different ways of the gravitation theory:
 - the expansion of the universe and the growth of structures
 - this allows to test General Relativity and other theories in very large scales!

Reyes et al et al. (2010)

Galaxy evolution: galaxy spectra or colors contain information on their stellar populations

- We measure the spectral deviation z:
- in general, redshifts (z > 0)

$$z \equiv \frac{\lambda_0 - \lambda_e}{\lambda_e}$$

- in cosmology, z is related to the expansion of the universe:
- $1+z = R_0/R$ where R(z) is the expansion factor
- distances are a function of z: d(z)
- Hubble law: $v = cz = H_0 d$
- But the spectral deviation is affected by peculiar velocities:
- $V = V_{H} + V_{pec}$

• We can measure the spectral deviation z with a spectrograph

error in v: ~100 km/s

2 0.0833 +/- 0.0002 (1.00, 0.91m) 4000 5000 7000 9000 9000

- or from multi-band photometry: photometric redshifts
- SDSS (5 optical bands):
 error in v: ~10,000 km/s

 JPAS (56 bands): error in v: ~1,000 km/s

an illustration of the 3-D galaxy distribution in the local universe

Now adding peculiar velocities

+ photometric redshift errors (0.02)

+ photometric redshift errors (0.005)

a challenging data analysis!

Data Analysis: Bayes Theorem

- results very sensitive to uncertainties and selection effects
- estimation of photometric redshifts from colors and magnitudes for galaxies of type T:

```
p(z|C,m) \alpha \Sigma_T p(C|z,T) p(z|m,T) p(T|m)
```

priors are essential!

JPAS = ALL SKY IFU

JPAS = Javalambre-Physics of the Accelerated Universe Astrophysical Survey, Spanish-Brazilian collaboration

8000 sq.deg. survey with 56 filters with 100A width, I<22.5

Dark site with 0.71 arcsec seeing: Javalambre in Teruel, Spain

2.5m tel. + 5 sq.deg. cam, 1.2Gpix, etendue = 1.5 x PS1

It will measure 0.003(1+z) photo-z for ~100M galaxies

It will measure radial BAOs up to z~1.3: 11 (Gpc/h)³

Clusters, Weak lensing, SN, QSOs, Galaxy evolution, Stars, Solar system

Start=2013-2014 End= 2017-2018

Benítez 2009, ApJ, 691, 241

56 filters- accuracy in photo-z: ~0.003(1+z)

 Low resolution spectra (R~50) for all pixels of an image: ALL SKY IFU

56 filters- accuracy in photo-z: ~0.003(1+z)

JPAS

- IAA-CSIC (MICINN)
- CEFCA
- Observatorio Nacional, Río de
- Departamento de Astronomia,
- Universidade de São Paulo
- Centro Brasileiro de Pesquisas Físicas

WHO?

CEFCA: Mariano Moles, Javier Cenarro, David Cristóbal, Antonio Marín-Franch. Nicolás Gruel, Carlos Hernández-Monteagudo, Gustavo Bruzual IAA: Txitxo Benítez, Emilio Alfaro, Teresa Aparicio, Carlos Barceló, Rosa González, Javier Gorosabel, Matilde Fernández, Yolanda Jiménez-Teja, Alberto Molino Universitat de Valencia: Vicent Martínez, Pablo Arnalte, Juan Fabregat, Alberto Fernández-Soto, Vicent Peris, Vicent Quilis IAC: Jordi Cepa, José Miguel Rodríguez-Espinosa, Angel Bongiovanni, José Alfonso López-Aguerri, Elena Ricci, Ignacio Trujillo, Alexander Vazdekis IFCA: Xavier Barcons, Enrique Martínez-González, José María Diego, Ignacio González- Serrano, Patricio Vielva Universidad Complutense de Madrid: Jesús Gallego, Javier Gorgas, Nicolás Cardiel, Patricia Sánchez-Blázquez Universidad del País Vasco-EHU: Tom Broadhurst, Ruth Lazkoz CAB: Álvaro Giménez, Eduardo Martín Universidad de Zaragoza: Antonio Elipe Universidad de Barcelona: Jordi Torra ESAC: Enrique Solano Universidad Autónoma de Madrid: Gustavo Yepes Universidad de Florida: Rafa Guzmán Brazil Renato Dupke, Raúl Abramo, Jailson Alcaniz, Bruno Castillo, Mauricio Calvão, Jorge Carvano, Roberto Cid-Fernandes, Eduardo Cypriano, Fabricio Ferrari, Claudia Mendes de Oliveira, Marcelo Rebouças, Thaisa Storchi-Bergman, Keith Taylor, Laerte Sodré, Joao Steiner, Eduardo Telles, Ioav Waga

WHERE?

Sierra de Javalambre, Teruel, Spain Site testing since 2007 @ Moles et al. (2010), PASP, Vol. 122, 889, 363

JPAS STRUCTURE

Scientific Coordinators: Txitxo Benítez and Renato Dupke

Scientific Board: + Mariano Moles, Laerte Sodré

SMC: +Keith Taylor, Jordi Cepa, J. Cenarro, A. Marín-Franch, Claudia Mendes de Oliveira, A. Fernández-Soto, D. Cristóbal

SWGs ranging from Theory to Solar System (R. Abramo, J. Alcaniz, T. Broadhurst, E. Martin, J. Carvano, J. Gorosabel)

~70 astronomers (and some physicists) from most Spanish and Brazilian institutions

FULLY FUNDED: total budget ~30M€ (includes observatory construction and running costs; hardware costs for T250+camera ~ 15M€)

5 sq.deg. / 1.2Gpix

- -14 different filters per tray
- Each CCD only "sees" 1 filter per tray
- -J-PAS requires 56 narrow band filters (4 trays x 14 CCD/tray)

WHEN?

T250

March 2010: T250 contracted with AMOS

August 2011: T250 camera contracted

February 2012: 1st E2V CCD

August 2012 : T250 telescope delivered

November 2012: 16th CCD delivered

August 2013: T250 operational

August 2013: T250 camera delivered

Beginning 2014: JPAS survey starts

End 2016: 0.6< z<1.3 BAO survey finished

End 2018: Full survey finished

T80:

July 2011: T80 Camera contracted

August 2011: T80 delivered

March 2012: T80 operacional

July 2013: T80 camera delivered

October 2012: T80 camera operational,

miniJPAS starts

JPAS = ALL SKY IFU

JPAS = Javalambre-Physics of the Accelerated Universe Astrophysical Survey, Spanish-Brazilian collaboration

8000 sq.deg. survey with 56 filters with 100A width, I<22.5

Dark site with 0.71 arcsec seeing: Javalambre in Teruel, Spain

2.5m tel. + 5 sq.deg. cam, 1.2Gpix, etendue = 1.5 x PS1

It will measure 0.003(1+z) photo-z for ~100M galaxies

It will measure radial BAOs up to z~1.3: 11 (Gpc/h)³

Clusters, Weak lensing, SN, QSOs, Galaxy evolution, Stars, Solar system

Start=2013-2014 End= 2017-2018

Benítez 2009, ApJ, 691, 241

Projeto Pau-Brasil Sul

- Idéia básica: "clonar" os telescópios, câmeras, etc do J-PAS
- Instalar os telescópios em um sítio de primeira linha no Chile ou Argentina

Vantagens:

- Aceleração na obtenção dos resultados científicos e portanto no impacto do J-PAS
- Além de conduzir um survey semelhante ao J-PAS, junto com este poderemos conduzir um survey de TODO o CÉU!
- Arqueologia estelar: populações e satélites da Via Láctea
- Sinergia com outros projetos: robótico (tecnologia), LSST (redshifts – CONTRIBUIÇÃO ÚNICA!)
- Custo (incluindo 7 anos de operações): < US\$32M (parcerias?)

Oportunidade de ouro para nossa astronomia: permitirá fazer big science, construir e gerenciar grandes equipamentos e um grande levantamento, produzindo um legado que dará extraordinária visibilidade à astronomia brasileira!

SuMIRe/PFS

Subaru Measurement of Images & Redshits Prime Focus Spectrograph

- Project leaded by IPMU/Tokyo (PI: Hitoshi Murayama)
- (+ NAOJ, Princeton, Caltech, Marseille, Edinburgh, Taiwan, IAG, LNA)
- Subaru: 8m telescope; 1.77 sq. deg. FOV
- HyperSuprimeCam imaging survey from 2011;
 2000 sq. deg.; 0.9B pixels
- Prime Focus Spectrograph follows ~2017
- PFS: ~2500 simultaneous spectra!
- Surveys:
- 2000 sq. deg. @ z=0.6-1.6; ~2M objects
- 300 sq. deg. @ z=2.3-3.3; ~0.6M objects
- 100 dark nights

Dark Matter and galaxy formation

basic hypothesis:

just after the Big Bang the Universe was very homogeneous, with small density fluctuation produced during inflation;

these fluctuations are the seeds of galaxies and large scale structures and grow by gravity

problem: in a purely baryonic universe, galaxies do not have time to form!! A material, non-baryonic component is necessary: dark matter

Structure Formation: BAOs evolution of the density profile p(r)r²

recombination