The slow neutron capture process

Dr. Amanda Karakas School of Physics & Astronomy Monash University, Australia

NoCA Monash Centre for Astrophysics

The Helix Nebula - NGC 7293 O HUBBLESITE.org

I'm giving three lectures, which will be broken down into the following components:

- 1. Introduction some basics
- 2. Nucleosynthesis prior to the asymptotic giant branch (AGB) phase
- 3. The evolution and nucleosynthesis of AGB stars
- 4. The slow neutron capture process

AGB stars as element factories

Production of heavy elements

- By heavy elements we mean heavier than iron (Fe)
- Z is large → the electrostatic repulsion inhibits fusion reactions
- Most heavy nuclei are formed by neutron addition onto Fepeak elements
- Two processes:
 - *r-process* (rapid neutron capture)
 - *s*-*process* (slow neutron capture)

References:

Meyer (1994), Sneden, Cowan & Gallino (2008)

The distribution of heavy elements

Making heavy elements

Rare proton-rich isotopes

Neutron number

Proton number

Magic Numbers

- Analogous to the behaviour of atomic physics, where certain electron configurations are very stable
- Such elements are inert (e.g., noble gases, He, Ne, Ar)
- Similar behaviour seen in nuclear physics for isotopes with full neutron shells: neutron magic numbers
- nuclei with a magic number of neutrons n = 50, 82, 126 (for lighter elements n = 2, 8, 20, 28)
- A nuclei composed of a magic number of protons AND neutrons is very stable, doubly magic e.g. ¹⁶O, and ²⁰⁸Pb with p = 82 and n = 126
- Closed-shell nuclei are very stable against neutron capture and have low neutron-capture cross sections
- Act as bottlenecks, seen as s-process peaks
- The r-process peaks produced when very unstable nuclei decay to nuclei with a magic number of neutrons
- Note that ⁵⁶Ni, made in abundance by SN, is doubly magic!

The slow neutron capture-process

- Add neutrons slowly, so that unstable nuclei generally have time to β -decay before capturing another neutron
- That is, $\tau_{\text{beta-decay}} << \tau_{\text{neutron-capture}}$
- Produces nuclei along the "valley of beta-stability"
- Start with Fe-peak elements as they are very abundant, a typical path is:

56 Fe(n, γ) 57 Fe(n, γ) 58 Fe(n, γ) 59 Fe

- What happens at ⁵⁹Fe? (half life ~ 44 days) → branching point: Choice between decaying to ⁵⁹Co or capturing a neutron to form ⁶⁰Fe
- The isotopic component of all elements between Sr and Pb have an important contribution from the s-process

Which stars make s-process elements?

- 1. AGB stars
 - AGB stars are observed to be rich in carbon and heavy elements produced by the s-process, including the unstable element Tc
 - The discovery of Tc in the atmosphere of an AGB star by Merrill (1952) was the first confirmation that stars make heavy elements
 - Famous review: Burbidge, Burbidge, Fowler & Hoyle (1957): B²FH

1. Massive stars

- The He and C-burning shells of massive stars also make heavy elements via the s-process
- Weak s-process, elements from Zn to Sr
- Little production in metal-poor massive stars, unless rotation is significant
- References: The et al. (2000), Pignatari et al. (2010), Frischknecht et al. (2012, 2016)

The s-process in AGB stars

- AGB stars observed to be enriched in s-process elements are mostly of low mass, between ~1 to 3Msun
- How does the s-process occur?
- The trick is making free neutrons!
- These come from the ${}^{13}C(\alpha, n){}^{16}O$ reaction
- He-shell is ashes of H-burning: 98% He, 2% ¹⁴N, some ¹³C
- Models have shown that the amount of ¹³C is not enough to account for s-process enhancement of S and C-type stars
- We still do not understand how stars produce enough ¹³C in a He-burning region to activate this reaction

References: Busso, Gallino & Wasserberg (1999), Käppeler et al. (2011), Karakas & Lattanzio (2014)

The s-process

Neutrons are released in ¹³C pockets – these form by mixing *a bit* of hydrogen into the intershell

The s-process

Composition of the interhsell in a 2Msun, Z = 0.001 model:

- a) Protons mixed into the intershell over Mass_{mixing zone}.
- b) The formation of the ¹³C pocket; peak neutron flux.
- c) Pb is created at the expense of Ba; ¹³C abundance below that of ${}^{14}N \rightarrow$ no more neutrons.

From Fishlock, Karakas et al. (2014)

Neutron sources: ²²Ne source

• The other neutron source is

¹⁴N(α , γ)¹⁸F (β ⁺ ν)¹⁸O(α , γ)²²Ne(α ,n)²⁵Mg

- Plenty of ¹⁴N left over from CNO cycling to produce the ²²Ne
- Occurs in stars when the temperature of the He-burning region exceeds about 300 x 10⁶ K, under convective conditions
- Intermediate-mass AGB or super-AGB stars (~4 to maybe 10Msun)

Neutron production

Extra burst of neutrons from the $^{22}Ne(\alpha,n)^{25}Mg$ reaction, which takes place during thermal pulses

Theoretical models

Typical neutron density profile in time:

Neutron source

Maximum neutron density

Timescale

Neutron exposure

Intermediate mass
²² Ne(a,n) ²⁵ Mg
10 ¹³ n/cm ³ ?
10 yr
0.02 mbarn ⁻¹

(at solar metallicity)

The s-process in solar-metallicity models

The s-process: The effect of metallicity

Decrease in metallicity results in more s-process elements at the 2nd peak (Ba, La), then at the 3rd (Pb)

Intrinsic s-process indicators

- [Is/Fe] = light s-process elements (e.g., Y, Sr, Zr) where
 [Is/Fe] = ([Y/Fe] + [Sr/Fe] + [Zr/Fe]) / 3
- [hs/Fe] = heavy s-process elements, typically choose 2-4 elements (e.g., Ba, La, Ce; Bisterzo et al. 2010, Lugaro et al. 2012)
- Then the ratio [ls/hs] are indicators of elements only produced in AGB stars (unlike Fe)
- These intrinsic ratios are mostly independent of AGB modelling uncertainties including mass loss, third dredgeup, and binary mass transfer
- Instead, they constrain the nucleosynthesis occurring in the deep layers of the star and trace the metallicity

Intrinsic s-process indicators

- [Is/Fe] = light s-process elements (e.g., Y, Sr, Zr) where
 [Is/Fe] = ([Y/Fe] + [Sr/Fe] + [Zr/Fe]) / 3
- [hs/Fe] = heavy s-process elements, typically choose 2-4 elements (e.g., Ba, La, Ce)
- Example for 3Msun models of different metallicity:

[Fe/H]	[Rb/Zr]	[ls/Fe]	[hs/Fe]	[hs/ls]	[Pb/hs]
+0.3	-0.57	1.16	0.92	-0.24	-0.39
0.0	-0.73	1.47	1.44	-0.03	-0.28
-0.3	-0.69	1.64	1.96	0.32	-0.20

• Compare to a 5Msun, [Fe/H] = -0.3:

[Fe/H]	[Rb/Zr]	[Is/Fe]	[hs/Fe]	[hs/ls]	[Pb/hs]
-0.3	0.48	0.26	0.03	-0.23	0.00

The s-process: Why range of mass?

- The s-process in a 6Msun, Z = 0.0001 AGB star produces copious Rb (Z=37) compared to Ba, Pb
- This is because it occurs at high neutron densities: ~10¹³ n/cm³
- Figure: Yields for [Fe/H] = -2.2 from Lugaro et al. (2012) for M = 1 to 6Msun

Neutron density indicators

At high neutron densities, two branching points open that allow rubidium to be produced. At N_n =5 x 10⁸ n/cm³ ~80% of the flux goes through ⁸⁵Kr, and the branching at ⁸⁶Rb opens to make ⁸⁷Rb

- 1. ⁸⁵Rb has a high σ = 240 mb (30 keV)
- 2. ⁸⁷Rb is magic, has a low σ = 15 mb (30 keV)

→ Rb in AGB stars in an indicator of the neutron density!

⁸⁶Kr, ⁸⁷Rb, and ⁸⁸Sr are all magic, with low neutron capture cross sections In low-mass stars: ⁸⁸Sr produced In massive AGB: ⁸⁷Rb

Zr,Sr/Rb > 1 → low-mass AGB Zr,Sr/Rb < 1 → > 4Msun AGB

Rubidium in bright AGB stars

From D. A. Garcia-Hernandez et al. (2006, Science) See models by Karakas et al. (2012), van Raai et al. (2012)

AGB chemical yields

Example: [Fe/H] = 0 (solar) from Karakas & Lugaro (2016)

Yield = amount of an isotope ejected into the ISM over the star's lifetime

Black dots = weighted by an IMF

AGB chemical yields

Carbon enhanced metal-poor stars

- Next few slides from Lugaro, Karakas et al. (2012)
- Roughly 10-20% of old halo stars are C-rich ([C/Fe] > 1; reviews by Beers & Christlieb 2005, Frebel & Norris 2015)
- Of these ~2/3 show enrichments in heavier elements (e.g., Aoki et al. 2007)

Using the data and classification of Masseron et al. (2010)

[Ba/Fe] versus [Eu/Fe]

Top panel: results of different masses, scaled solar initial composition Lower panel: results of variations in the initial composition for the 2Msun Stromlo model

Summary:

- All models produce Ba and Eu with the prediction lines following the trend of the CEMP-s group
- AGB models do not produce the high [Eu/Fe] seen in the CEMPs/r stars
- Increasing the initial [r/Fe] produces same final [Ba/Fe]
- Correlation between Ba and Eu of CEMP-s/r group *not* reproduced

The puzzle of the CEMP-s/r stars

- About 50% of CEMP stars with an s-process signature also show an enrichment in rprocess elements
- It is puzzling how CEMP-s/r could have formed in such large numbers
- Given that the s and rprocesses are thought to occur in independent events
 - s-process (AGB stars)
 - r-process (supernnovae?)

Definition of CEMP s/r:

- [Eu/Fe] > 1
- [Ba/Eu] > 0 but lower than for CEMP-s (0.9 c.f. 0.6)
- Appear distinct from CEMP-s

[ls/hs] versus [Mg/hs]

- Use "intrinsic" indicators, elemental ratios that only include elements produced in AGB stars
- All our AGB models produce [ls/hs] > -1, similar to CEMP-s
- This is a basic fact about the s-process and comes from neutron-capture cross sections
- CEMP-s/r have the lowest [ls/hs] and [Mg/hs] values

CEMP data from Masseron et al. (2010). Data for *Is* is taken from the SAGA database (Suda et al. 2008)

Is = light *s*-process elements (Sr, Y, Zr), hs = heavy s elements (Ba, La, Ce)

Sodium and fluorine

- Models where ¹³C burns radiatively provide a good match to the overall composition of CEMP-s stars in terms of their [Mg/hs], [ls/hs], and [Pb/hs]
- But produce too much Na and F with respect to the heavy sprocess elements
- Could be related to the formation of the ¹³C pocket (and ¹⁴N pocket)
- Leads to Na production via ¹⁴N(a,γ)¹⁸O(a,γ)²²Ne in intershell then ²²Ne (p,γ)²³Na

CEMP data from Masseron et al. (2010) Data for Na from Lucatello et al. (2011)

Problems with theoretical picture

Post-AGB stars: Evolved from stars of low-mass, 1-1.5Msun at relatively low metallicity, [Fe/H] ~ -1 (e.g., De Smedt et al. 2014; van Aarle et al. 2013)

Figure from Kenneth De Smedt

What about carbon-enhanced metal-poor stars?

• [Pb/La] from a selection of CEMP stars. From Van Eck et al. (2003)

2Msun, [Fe/H] = -2.3

- → Produces CEMPtype composition
- → Low neutron density

6Msun, [Fe/H] = -2.3

- → Does not produce a CEMP
- → High neutron density

Neutron production is still poorly understood

Neutrons form in ¹³C pockets – we don't know how these form!

Neutron production is still poorly understood

How much hydrogen is need to make a ¹³C pocket? We don't really know. This is a big uncertainty in models of the s-process

The intermediate process

Neutron flux determines whether we have an s or r-process:

- **r**-process: $n_n > 10^{20} n/cm^3$
- s-process: $n_n < 10^{13} \text{ n/cm}^3$

During the *r* process: Time scale $(n,g) << \tau_{\beta}$

During the *s* process: Time scale (n,g) >> τ_{β}

- What about in between?
- Theoretically, we know that proton ingestion into a Heburning region will produce neutron densities of ~10¹⁵ n/cm³ (Campbell, Lugaro & Karakas 2010)
- There was no evidence that such behaviour was found in nature, until recently

The i-process

 Do proton ingestion episodes produce an i-process in post-AGB stars?

(Herwig et al. 2011; De Smedt et al. 2012, 2014; Lugaro et al. 2015)

- What about the origin of the carbon enhanced s/r stars?
 (Dardelet et al. 2015; Jones et al. 2016; Stancliffe et al. 2016)
- → Ubiquitous in metal-poor stars throughout the Galaxy?

→ Roederer, Karakas et al. (2016)

HD 94028 from Roederer et al. (2016) Ge Se Sr Zr MoRu Pd Cd Te Ba Ce NdSmGdDy Er Yb Hf W Os Pt Hg Pb As Rb Y Nb Tc Eu Tm Lu Ag HD 94028 Sum of three processes r-process -process 1 log ε -1-240 50 60 70 80 Atomic Number 2 [X/Fe]0 50 60 70 80 40

Atomic Number

Open questions

- Rotation completely inhibits the s-process (Herwig et al. 2003) or moderates its effects (Piersanti et al. 2013)
- However, there are very few AGB models with rotation that include the s-process
- The abundance distribution of low-metallicity post-AGB stars and the composition of CEMP s/r stars point toward another process that occurs in nature
- \rightarrow intermediate-neutron capture process, or "i-process"
- → Low-mass (< 1.5Msun) and/or super-AGB stars are proposed sites...</p>
- → How does the i-process contribute toward the enrichment of the Galaxy, if it does at all? Exciting times!