Evolution and Nucleosynthesis during the AGB phase

> **Dr. Amanda Karakas School of Physics & Astronomy** Monash University, Australia

> > The Helix Nebula - NGC 7293 O HUBBLESITE.org

I'm giving three lectures, which will be broken down into the following components:

- 1. Introduction some basics
- 2. Nucleosynthesis prior to the asymptotic giant branch (AGB) phase
- 3. The evolution and nucleosynthesis of AGB stars
- 4. The slow neutron capture process

Asymptotic Giant Branch stars

- The asymptotic giant branch is the last nuclear burning phase for stars with mass < 8-10Msun
- AGB stars are cool (~3000 K) evolved giants, spectral types M, S, C
- It is during the AGB where the products of nucleosynthesis reach the stellar surface
- Many AGB stars are observed to be losing mass in dense outflows of material
- \rightarrow Enriching the interstellar medium
- ➔ Progenitors of planetary nebulae
- ➔ Reviews by Herwig (2005, ARAA) and Karakas & Lattanzio (2014, PASA)

H-exhausted core

Mixing and mass loss

- Convective mixing (dredge-up) mixes the products of nucleosynthesis from the (hot) interior to the surface.
- Mass loss removes the enriched envelope, expelling the products into the interstellar medium.
- → When does most of the mass loss occur? When does the most nucleosynthesis occur?

For low and intermediate-mass stars, that is during the asymptotic giant branch (AGB)

Where mixing takes place

Products of nucleosynthesis

Low and intermediate-mass stars go through central hydrogen and helium burning

During the AGB, they have shells burning H and He

- 1. First dredge-up: Products of (partial) H burning
- 2. Second dredge-up: Products of H burning
- 3. Third dredge-up: Products of H, He-burning and neutroncapture nucleosynthesis
- 4. Hot bottom burning: Products of H-burning
- 5. Extra mixing processes: Products of H-burning
- \rightarrow We we will now discuss the AGB phase of evolution

He-shell instabilities

- The He-shell thins as the star ascends the AGB and becomes thermally unstable
- He-burning in a thin shell leads to a thermal runaway, similar to the core He-flash
- Why?
- Not caused by electron degeneracy, although the shell is partially degenerate
- Caused by the shell being thin
- Contracting shell → hotter → ε ∝ T⁴⁰ → but shell can't expand enough to cool → thermal runaway
- Luminosities can reach > 10⁸ solar luminosities

He-shell burning in AGB stars

- Up to $\sim 10^8$ Lsun can be generated by a thermal pulse
- Energy goes into expanding the star
- He-shell becomes unstable to convection → mixes products of Heburning throughout shell

2Msun, Z = 0.014 model star:

Intershell convection during thermal pulses

- The enormous amount of energy drives a convective region in the intershell
- Extends over almost the whole intershell
- Homogenises abundances within this region
- The mass of the pocket ~ few 10⁻² Msun, depending on the stellar mass
- The duration of convection is ~few hundred years
- Composition: result of partial He-burning: ~70%
 ⁴He, ~25 ¹²C and ~5% other stuff (²²Ne, ¹⁶O etc)

Convection zones = green, radiative = pink

Results for a 1.9Msun, Z = 0.008 model Model number proxy for time

The thermal pulse cycle

Deep convective envelope

He-rich intershell

He-burning shell

Carbon-Oxygen core

Interpulse phase

The AGB Evolution Cycle

- 1. On phase: He-shell burns brightly, producing up to $10^8 L_{sun}$, drives a convection zone in the He-rich intershell and lasts for ~ 100 years
- 2. Power-down: He-shell dies down, energy released by flash drives expansion which extinguishes the H-shell
- 3. Third dredge-up: convective envelope moves inward into regions mixed by flash-driven convection. Mixes partially He-burnt material to surface.
- Interpulse: star contracts and H-shell is re-ignited, provides most of the surface luminosity for the next ~10⁵ years

Pulse (He-burning) \rightarrow TDU (mixing) \rightarrow Interpulse

Few ~10² yrs \rightarrow ~10² years \rightarrow ~10⁵ yrs

Let's look at a thermal pulse again

Extent of convective pocket is 1.7 x 10⁻² Msun About half gets mixed into envelope

 22^{nd} thermal pulse for the 3Msun, Z = 0.02 model

The importance of the third dredge-up

- The third dredge-up determines how much He-shell material is mixed from the core to envelope
- Mass loss determines the number of thermal pulses
- So the combination (depth of dredge-up and mass loss rate) determine the role that AGB stars play in the evolution and origin of elements in the Universe!!

Third dredge-up

- Badly named, can re-occur after each thermal pulse
- Inward movement of convective envelope, reaches into the He-shell
- Right-hand panel shows the evolution of the core in a low-mass AGB model
- Six (third)-dredge-up events are visible. Each one will mix He-shell material to the surface

Non-energetic reactions

- He-burning occurs in the *ashes* of H-burning
- The composition is typically 98% ⁴He, \sim 2% ¹⁴N
- Remember that the CNO cycle produces mostly ¹⁴N, which can capture alpha particles to produce secondary nuclei, depending on T:
 - 14 N(α, γ)¹⁸F(β⁺ν)¹⁸O(α, γ)²²Ne
 - ²²Ne + $\alpha \rightarrow$ ^{25,26}Mg (+n or γ) when T > 300 million K
- These reactions produce little energy but are important for nucleosynthesis
- Example, the ²²Ne(α,n)²⁵Mg (Q = -0.478MeV) reaction releases *free* neutrons that can be used to produce heavy elements i.e., ⁵⁶Fe(n,γ)⁵⁷Fe(n,γ)...

Fluorine production

- It's complicated! (e.g., Lugaro et al. 2004)
- The reaction chain: ${}^{18}O(p, \alpha){}^{15}N(\alpha, \gamma){}^{19}F(\alpha, p){}^{22}Ne$
- Fluorine production takes place in the He-intershell: This is a region rich in ⁴He, ¹²C
- There are almost no protons or ¹⁵N
- These are created by other reactions including:
 - $^{14}N(\alpha,\,\gamma)^{18}F(\beta^{+})^{18}O$ main reaction to produce ^{18}O
 - ${}^{13}C(\alpha, n){}^{16}O$ produces free neutrons (also for the s-process)
 - ${}^{14}N(n, p){}^{14}C$ produces free protons
 - ¹⁸F(α , p)²¹Ne new, alternative proton production
 - ${}^{14}C(\alpha, \gamma){}^{18}O$ alternative reaction
 - $^{18}O(\alpha,\,\gamma)^{22}Ne$ main ^{18}O destruction reaction
 - ¹⁵N(p, α)¹²C destroys ¹⁵N

From a nucleosynthesis point of view:

- The triple alpha and ¹²C(α, γ)¹⁶O reactions convert ⁴He into ¹²C and ¹⁶O
- Secondary reactions can produce ¹⁸O, ¹⁹F, ²²Ne, ²⁵Mg, ²⁶Mg
- Final composition depends on temperatures, densities, and the duration of burning
- Secondary reactions can produce free neutrons (e.g., ¹³C(a,n)¹⁶O, ²²Ne(a,n)²⁵Mg) which drives the s-process

Products of He-shell nucleosynthesis

3Msun, Z = 0.014:

Surface abundance of carbon (left) and fluorine (right) during the AGB

 \rightarrow We can make a carbon-rich star, which has C/O > 1

Mass range of carbon stars?

• From Karakas (2014) for [Fe/H] = -0.3, 0.0, +0.3

Third dredge-up uncertainties

- It is important to know if the models are providing an accurate description of mixing in real AGB stars
- Because the third dredge-up determines how much Heshell material is mixed from the core to envelope
- Do current models predict enough TDU?
- Or too much?
- → Do the model predict the right mass and luminosity ranges for carbon stars?

Carbon star luminosity functions

- Distances to the Magellanic Clouds are known
- Can derive accurate C-star luminosity functions
- These indicate that (most) stellar models do not predict enough dredge-up at low enough masses
- And it is deeper at these lowest masses than current models predict
- Can "force" the TDU in lowmass models...

Stancliffe, Izzard, & Tout (2005)

Uncertainties: The amount of third dredge up

1.25Msun, Z = 0.01:

- Forcing dredge-up by extending the base of the envelope by N scaleheights
- e.g., Karakas et al. (2010); Frost & Lattanzio (1996)

Figure 4.17: Highlighting the strong effect of including overshoot on the AGB. The time evolution of the mass of the H-exhausted core is plotted. Both stars, having a mass of 2 M_{\odot} and a metallicity of [Fe/H]=-5.45, started with the same initial conditions except for the inclusion of overshoot in one (lower curve, $f_{OS} = 0.01$). An enormous difference in core mass evolution is clearly seen. The model with no overshoot (upper curve) has virtually no 3dup whilst the model with overshoot initially has $\lambda_{3dup} > 1$. As the core mass is the primary factor in AGB evolution, the vastly different core masses represent a very large uncertainty in AGB evolution.

2Msun, [Fe/H]= -5.45:

Diffusive mixing + Herwig's scheme for extending the envelope using exponentially decaying overshoot From Simon Campbell

Hot bottom burning

Occurs in stars over about 4.5Msun for Z = 0.014

Along with thermal pulses and the third dredge-up, these stars also have:

- Second dredge-up: Biggest ΔY (up to 0.1)
- Hot bottom burning: Proton-capture nucleosynthesis at base of envelope (products: N, Na, AI)

Hot bottom burning and third dredge up

Example: 6Msun, Z = 0.02

Third dredge-up (TDU) and HBB act together

CN cycle is acting close to equilibrium for ~20 thermal pulses

 $^{12}C/^{13}C \sim 3$ is the equilibrium ratio

The C/O ratio never exceeds 1

Hot bottom burning and third dredge up

Looking at the surface abundances of Ne to Al as a function of metallicity:

- 6Msun, Z = 0.02 has a peak temperature of ~80 million K
- 6Msun, Z = 0.004 has a peak of ~95 million K

Lithium production

- The first thing to happen is that ⁷Li is produced via the Cameron-Fowler Beryllium Transport Mechanism
- This is basically pp chains plus convection!
- The idea is that lithium is made by ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$
- and then to use convection to move the ⁷Be away from the hot region before it can complete the ppll or pplll chains:

³He (
$$\alpha, \gamma$$
) ⁷Be (β, ψ) ⁷Li
³He (α, γ) ⁷Be (β, ψ) ⁷Li
⁵Be (p, γ) ⁸B ($\beta^* \vee$) Be(α) ⁴He = PPIII
BAD!
BAD!

Cameron-Fowler mechanism

Lithium production

Lithium is produced by the Cameron-Fowler mechanism: ⁷Be is transported by convection, where it captures an electron to produce ⁷Li

 $\log \epsilon(\text{Li})_{\text{max}} = \log_{10}(\text{Li/H}) + 12 = 4.5$

Uncertainties caused by convection

for three convective prescriptions

Surface CNO abundances as a function of total mass

From Ventura & D'Antona (2005)

Other mixing phenomena

- What is the impact of non-convective extra mixing processes on AGB evolution and nucleosynthesis?
- Examples include: rotation, thermohaline or double diffusive mixing, mixing induced by internal gravity waves, magnetic fields...
- Effect on the stellar yields?

I won't have time to discuss these here **Reading:** Karakas & Lattanzio (2014, PASA review, arXiv:1405.0062)

Summary of nucleosynthesis

- **C/O > 1**: ~1.5 to $4.5M_{sun}$ for Z = 0.014 (solar)
 - Inward movement of convection mixes the products of He-shell nucleosynthesis to the envelope (¹²C,¹⁹F, *s*-process)
- **C/O < 1**: Above ~4.5M_{sun} for Z = 0.014
 - Hydrogen burning reactions at base of convective envelope (e.g., ⁷Li, ¹³C, ¹⁴N, ²³Na, ^{26,27}Al, s-process?)

References: (focused on nucleosynthesis results)

Busso, Gallino & Wasserburg (1999), Forestini & Charbonnel (1997), Straniero et al. (1997), Mowlavi (1999), Herwig (2000, 2005), Stancliffe & Jeffery (2007), Campbell & Lattanzio (2008), Suda & Fujimoto (2010), Cristallo et al. (2011, 2015), Wiess & Ferguson (2009), Marigo et al. (2013), Ventura et al. (2013), Cruz et al. (2013)

Super-AGB stars: 8-10 Msun stars

- The first models of stars in the range 8 to 10Msun were by Nomoto (1984), Garcia-Berro & Iben (1994), Ritossa et al. (1996), and Gutierrez et al. (1996)
- The paper by Garcia-Berro & Iben (1994) gave the name "super-AGB" for stars that ignite carbon and then experience thermal pulses
- These calculations are difficult, and no one really worked on them for a long time after, until Gil-Pons et al. (2001, 2002) and then Siess (2006)

Off-centre carbon ignition

- Stars between ~8 to 10Msun go through degenerate carbon ignition
- Before ascending the thermallypulsing AGB with O-Ne cores
- Q: What fraction explode as supernovae or leave massive white dwarfs?
- E.g., Poelarends et al. (2008), Gil-Pons et al. (2013), Jones et al. (2014)
- The brightest AGB stars in young populations, with Mbol ~ -7.6, brighter than the traditional AGB limit (Mbol ~ -7.1)

7.5Msun, Z= 10⁻⁴ model by Siess (2007)

Carbon ignition: 9Msun, Z = 0.02

- Maximum temperature peaks at ~950 x 10^6 K.
- Duration of carbon flashes and central burning ~30,000 years (model from Karakas et al. 2012)
- Carbon burning occurs during early AGB, while second dredge-up is occurring (e..g., Gil-Pons et al. 2005, Siess 2006)
- Dredge-up is deep, can eat into the He-burning shell

Super-AGB stars

A 9Msun, Z = 0.02 model has a core mass of ~1.18Msun. Too low to become an electron capture supernovae (from Karakas et al. 2012) It will produce an O-Ne white dwarf

Nucleosynthesis in super-AGB stars

 $7M_{sun}$, Z = 0.002 (1/100th solar). Peak temperature ~ 140 x 10⁶ K. This is about as extreme as it gets in an AGB star!

Recent models: Siess (2010) Pumo et al. (2008), Doherty et al. (2010) Karakas et al. (2012) Herwig et al. (2012) Ventura et al. (2012) Gil-Pons et at. (2013) Takahashi et al. (2013) Doherty et al. (2014a,b) Fishlock et al. (2014) Doherty et al. (2015) Shingles et al. (2015) Woolsey & Heger (2016) Jones et al. (2016)

Final fate of Super-AGB stars?

The final fate of super-AGB stars is uncertain

- → Will they mostly produce massive ONe white dwarfs
- → What fraction will explode as electron capture supernova?
- → What are their nucleosynthesis products? H burning? He-shell burning? The rapid neutron capture process?
- → What happens when they are in a binary system? Will more explode?
- → How do they affect the enrichment of the galaxy?

Lots of questions! Very exciting stuff

From Doherty et al. (2015)

Globular cluster abundances

In a typical cluster:

- The abundances of C-N, O-Na and Mg-Al are anticorrelated (Gratton et al. 2009, 2012)
- Sum C+N+O ~ constant (within a factor of ~2)
- No variation of alpha, s or r-process elements from star-to-star *within* a cluster...
- Does this imply the composition has been exposed to hydrogen burning (CNO, NeNa, MgAI)
- For an alternative hypothesis see Bastian et al. (2015)
 In an atypical cluster: ~10%
- NGC 1851, ω Cen, M22, NGC 2419
- Show variations in C+N+O, s-process, r-process (rare) and iron-peak elements (e.g, Marino et al. 2012)

The O-Na anti-correlation

- Why is there a correlation between O and Na in some globular cluster stars?
- Seen in all globular clusters (e.g., Carretta et al. 2009)
- Now we think it is probably pollution when the stars we see now formed → But from what?

Field stars versus GC stars

[Na/Fe]

- Evolved fields stars of the same metallicity as globular cluster stars show correlations between C and N
- This is caused by CN processed material being mixed into the envelope by the first dredge-up and extra mixing
- But field stars do not show correlations between O, Na (e.g., Gratton et al. 2000)
- But we also see C-N variations on the MS in GCs (e.g., figure from Cannon et al. 1998; also Briley et al. 2004)

Figure 6. The 47 Tuc colour-magnitude diagram, using the same data as Fig. 2 but with the symbols of Fig. 4 to distinguish between the CN-strong and CN-weak stars.

Pollution by what type of stars?

- 1. Deep mixing can explain the Li, C-N trends with luminosity in some GCs (e.g., Lind et al. 2009)
- 2. Self-pollution by AGB stars experiencing hot bottom burning (e.g., Ventura et al. 2009)
- 3. Self-pollution by slow winds from rapidly rotating massive stars (Decressin et al. 2007)
- 4. Binary massive stars (De Mink et al. 2009)
- 5. Very massive stars (~10,000Msun; Denissenkov & Hartwick 2014)

AGB stars have been favoured because their slow winds can be retained by the cluster, and they produce no metals

GC chemical evolution

- AGB models with third dredge-up cannot match helium enrichments along with O-Na, Mg-Al composition of GCs (e.g., NGC 6752 shown above; Fenner et al. 2004, Karakas et al. 2006)
- But see recent chemical evolution models from D'Ercole et al. (2010, 2016) using AGB models from Ventura et al. (2013)