Nucleosynthesis in low and intermediatemass stars

Dr. Amanda Karakas School of Physics & Astronomy Monash University, Australia

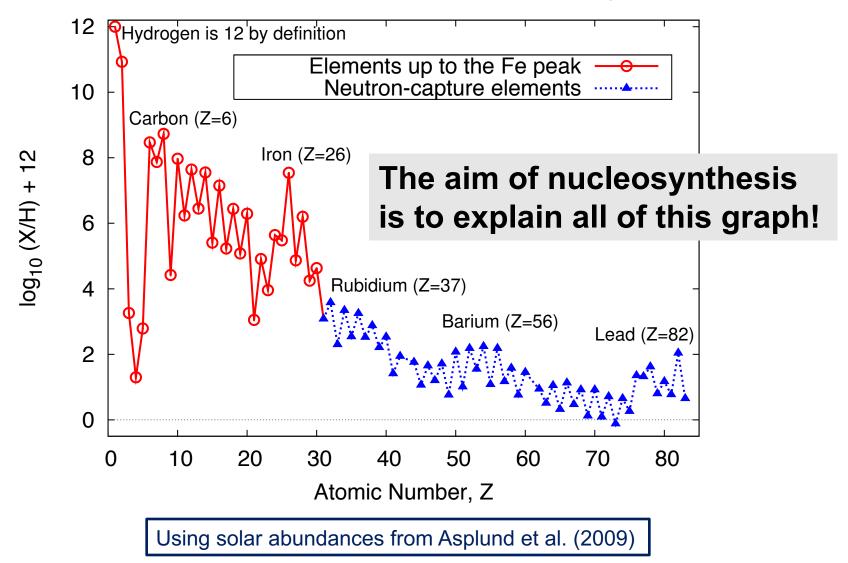
The Helix Nebula - NGC 7293 O HUBBLESITE.org

I'm giving three lectures, which will be broken down into the following components:

- 1. Introduction some basics
- 2. Nucleosynthesis prior to the asymptotic giant branch (AGB) phase
- 3. The evolution and nucleosynthesis of AGB stars
- 4. The slow neutron capture process

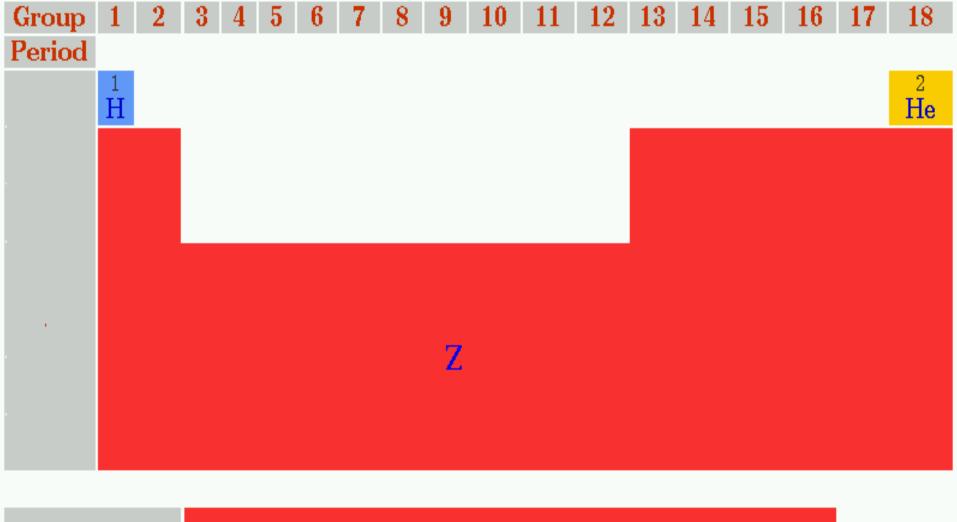
I'm giving three lectures, which will be broken down into the following components:

- 1. Introduction some basics
- 2. Nucleosynthesis prior to the asymptotic giant branch (AGB) phase
- 3. The evolution and nucleosynthesis of AGB stars
- 4. The slow neutron capture process


Introduction

- We are all made of star stuff!
- 13.7 billion years ago, the big bang made (mostly) hydrogen (~76%) and helium (24%)
- Everything else, including the material that makes up you and me, was cooked inside a giant stellar furnace
- What stars produce what elements?
- Our Sun is a star! How will it age? What elements will it make?

The Origin of the Elements


Abundance distribution in our solar system

Some basics

- Low-mass stars:
 - Initial masses from 0.8 to ~2.0 solar masses (maximum mass for core He-flash)
- Intermediate-mass stars:
 - Initial masses from 2.0 to 8 Msun (minimum mass for carbon ignition)
- Super-AGB and electron-capture supernovae:
 - Initial masses between 8-10Msun
- Massive stars:
 - Initial masses: $\gtrsim 10$ Msun
- These definitions are for Z = 0.014 (solar)
- X = hydrogen mass fraction, Y = helium mass fraction, Z = 1 - X - Y = "metals"
- In the Sun: X = 0.7154, Y = 0.2703, Z = 0.0142 (Asplund et al. 2009)

Periodic Table

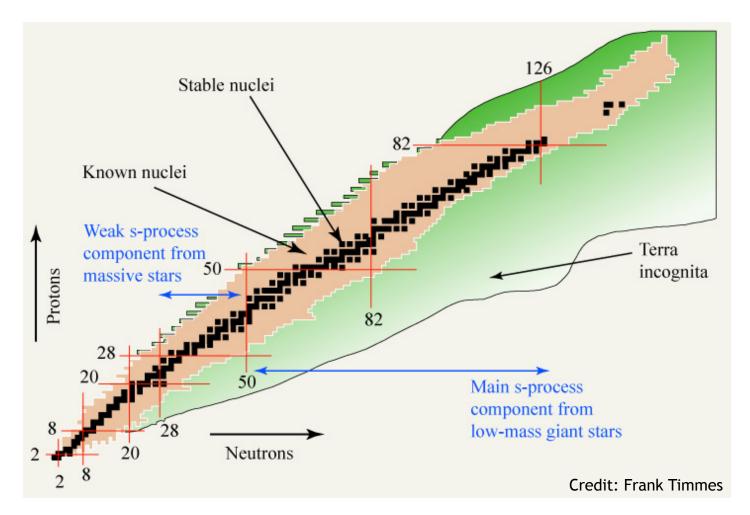
Periodic Table

Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		
1	${\rm H}^1$																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	$\stackrel{12}{\mathrm{Mg}}$											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	${\overset{71}{ ext{Lu}}}$	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	$\frac{108}{Hs}$	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
*Lantha	ano	ids	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
**Acti	noie	ds	89 A.c.	90 Th	91 Pa	92 11	-93 Nn	94 P 11	95 Am	96 Cm	97 Bk	98 Cf	99 Ee	100 Em	101 Md	102 No		

 \mathbf{n}

DK

LU2


 \mathbf{L} \mathbf{H}

TATA

TAC

Chart of the Nuclides

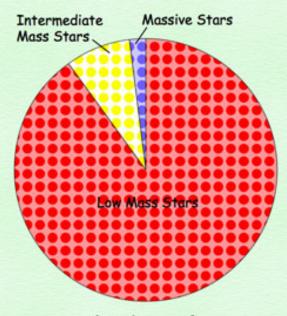
The further a nucleus is from the valley of nuclear stability, the more unstable it is to β^{\pm} decay i.e. the shorter is its half-life

Nucleosynthesis

- Production of atomic nuclei in the Universe
- Nucleosynthesis^{*} takes place deep inside stars
- How does it get out?

We need a way of moving the material from the stellar core, where thermonuclear reactions take place, to the surface. From there, we then need a way of moving the processed material into the ISM:

- Low and intermediate-mass stars (Romero, Karakas) → no explosion! Mixing + mass loss returns the material
- Massive stars and core collapse supernova explosions (Kobayashi)
- Chemical enrichment and Galactic archaeology (Melendez, Alves Brito, Kobayashi)


Star birth masses

Birth statistics

 For every massive star, there are 1000 intermediate mass stars and 10,000 low mass stars.

- About 60% of all stars are born in binary star systems.
 - A small fraction are born in triple and even quadruple systems.

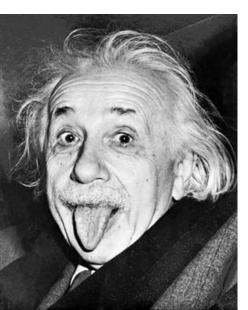
Initial Makeup of Stars

From Frank Timmes website

The stars that make elements

Very low mass stars (≤ 0.8 Msun, depending on Z) are still on the main sequence fusing hydrogen in their cores

- → These stars have not contributed to the chemical evolution of our Galaxy
- In terms of single stars, the most important are
 - Massive stars that explode as Type II (core collapse) supernova (≥ 10 solar masses);
 - Stars that evolve through the first and asymptotic giant branches (≤ 8 solar masses)

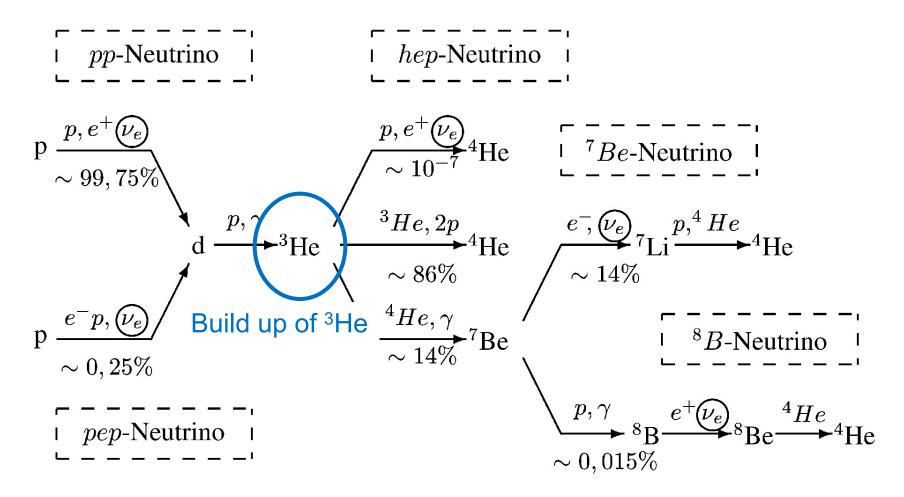

How long do stars live?

Age of the galaxy \approx 12 x 10 ⁹ years; Universe \approx 13.7 x 10 ⁹ years								
Initial mass (M _{sun})	Main sequence lifetime	Total stellar lifetime						
25	6.7 Myr	7.5 Myr						
15	11Myr	13 Myr						
5	80 Myr	100 Myr						
2	900 Myr	1.2 Gyr						
1	10 Gyr	12 Gyr						
0.8	20 Gyr	> 32 Gyr						

1 Myr = 1,000,00 years; 1 Gyr = 1000 Myr Ages from Karakas & Lattanzio (2007); Woolsley et al. (2002)

How do stars work?

- Once the temperature of a proto-star reaches about 10
 million degrees Kelvin, nuclear fusion begins!
- Hydrogen fusion *or burning* (i.e., similar to a H-bomb)
- 4 protons \rightarrow ⁴He + 2 e⁺ + 2 neutrinos + energy
- Where does the energy come from?
- From E = mc^2 : the mass of 4 protons > 1 ⁴He nuclei

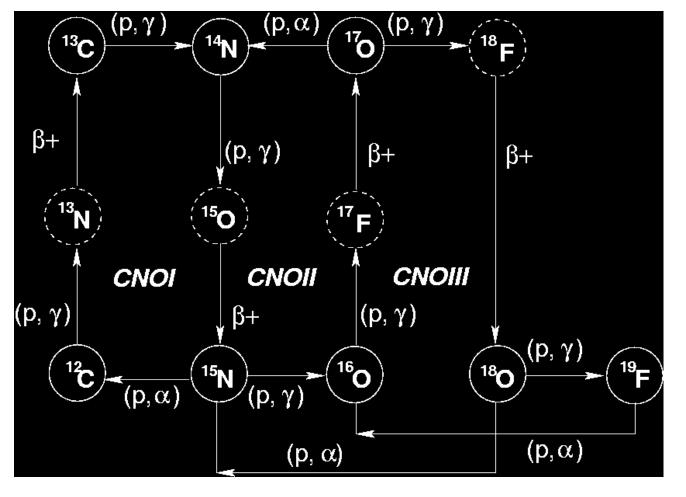


- How much energy?
- Energy released = 26 MeV= 4×10^{-12} Joules

But the Sun does this 10³⁸ times a second!

H-burning: Proton proton chains

Main result: 4 p \rightarrow ⁴He + energy + stuff

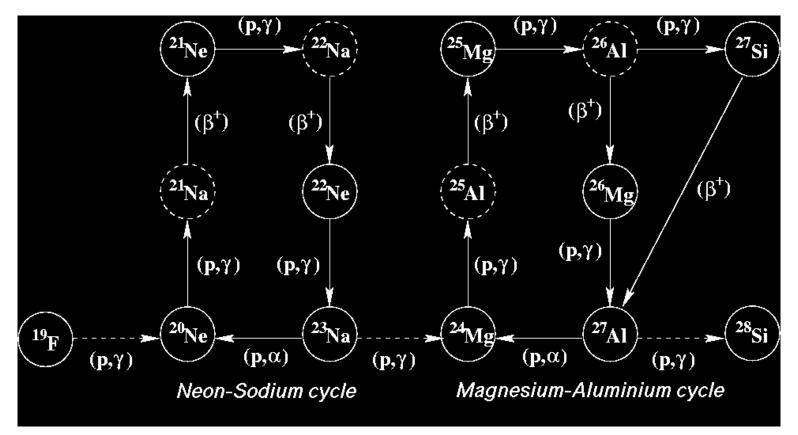

From MPA, Neutrino Astrophysics Group

H-burning: CNO cycles

Main result: 4 p \rightarrow ⁴He + energy + stuff The total number of C+N+O nuclei is conserved

While total number conserved we find:

- C+N+O nuclei are converted into ¹⁴N
- First C, N nuclei are involved
- Then O isotopes at hotter temperatures



H-burning: CNO equilibrium ratios

Ratios	Surface of Sun	CNO equilibrium			
¹² C: ¹⁴ N: ¹⁶ O	3:1:9	1:120:10			
¹² C/ ¹³ C	90	~3			

- The CNO ratios at stellar surface and from the CNO cycle equilibriums are very different
- ¹³C and ¹⁴N increase
- ¹⁶O abundance barely changes
- Low ¹²C/¹³C ratios (< 30) at the surface of a star an indication that material was exposed to CN cycling

Advanced H-burning cycles

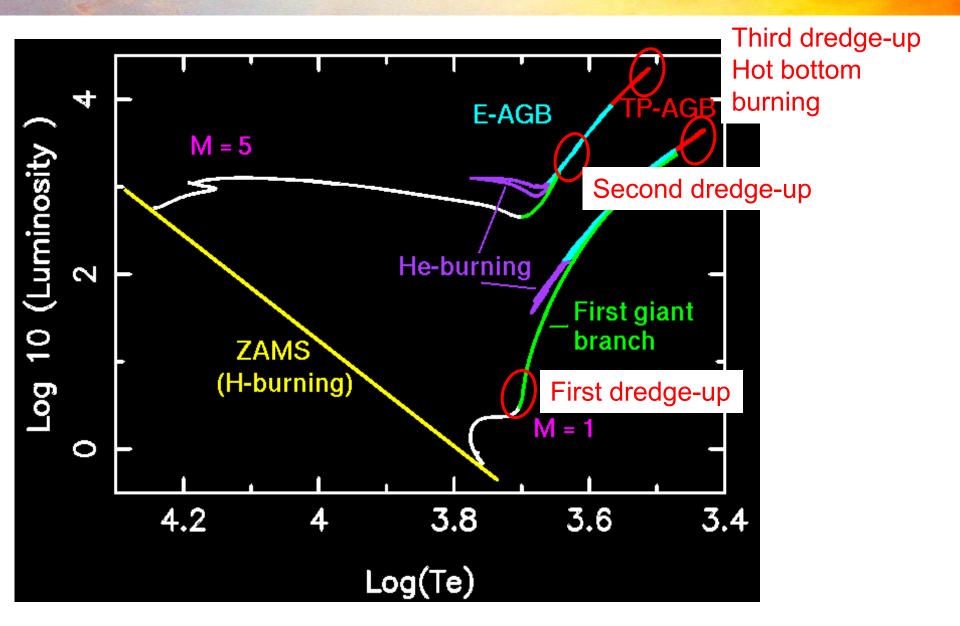
- Requires hotter temperatures, T \gtrsim 30 x 10⁶ K
- Increase in the abundance of ²³Na at the expense of ²²Ne
- Produces radioactive ²⁶Al and re-arranges the heavy Mg isotopes

Textbooks on nucleosynthesis

There are a number of good textbooks on the subject including

- 1. Clayton, D. D., "Principles of stellar evolution and nucleosynthesis", 1984
- 2. Arnett, D., "Supernovae and Nucleosynthesis", 1996
- 3. Iliadis, C., "Nuclear Physics of Stars", 2015 (2nd Ed)
- 4. Pagel, B., "Nucleosynthesis and Chemical Evolution of Galaxies", 2009
- 5. Ryan, S. & Norton, A. J., "Stellar Evolution and Nucleosynthesis", 2010 good undergrad textbook

I'm giving three lectures, which will be broken down into the following components:

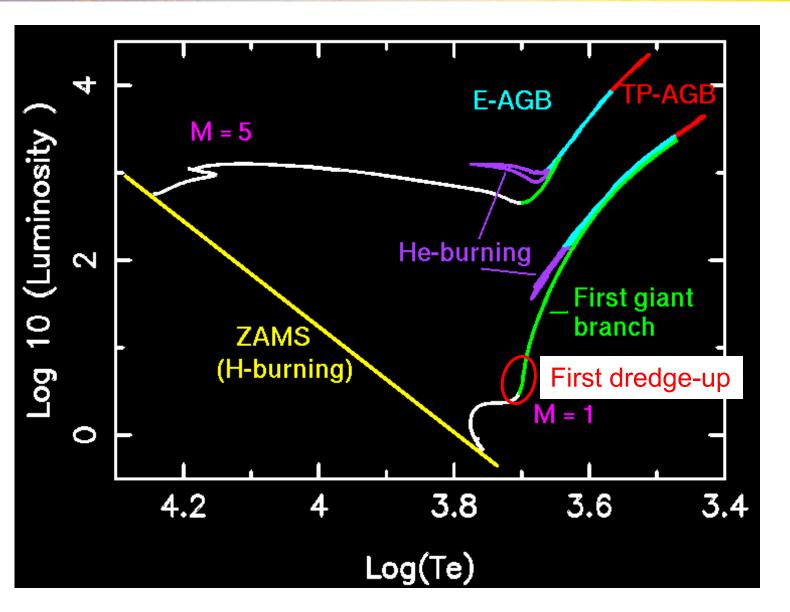

- 1. Introduction some basics
- 2. Nucleosynthesis prior to the asymptotic giant branch (AGB) phase
- 3. The evolution and nucleosynthesis of AGB stars
- 4. The slow neutron capture process

Reference

To put together these lectures, I used a lot of material published in my review paper:

 Karakas, A. & Lattanzio, J. C., "Nucleosynthesis and stellar yields of low and intermediate-mass stars", 2014, Publications of the Astronomical Society of Australia (PASA), 30, e30 and the many references therein

Where mixing takes place

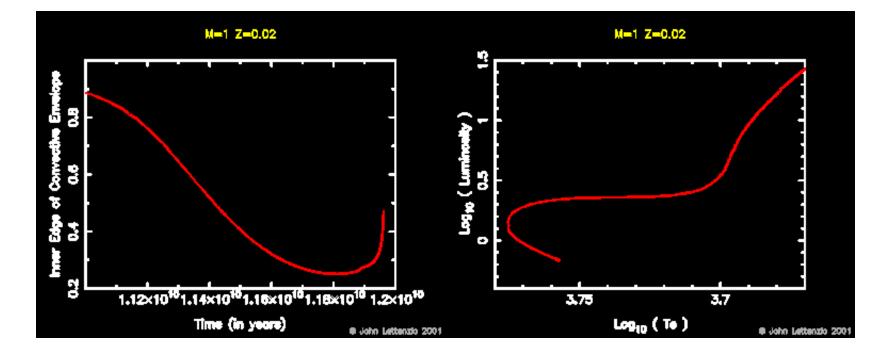


What I'm not talking about

- Surface composition can change by other, non-standard or classical mixing mechanisms:
- 1. Diffusion/gravitational settling
- Rotation but I'll mention it in the context of RGB and AGB surface abundance changes
- Binary evolution Chiaki will mention in context of Type la supernova

Do these affect the yields and Galactic chemical evolution?

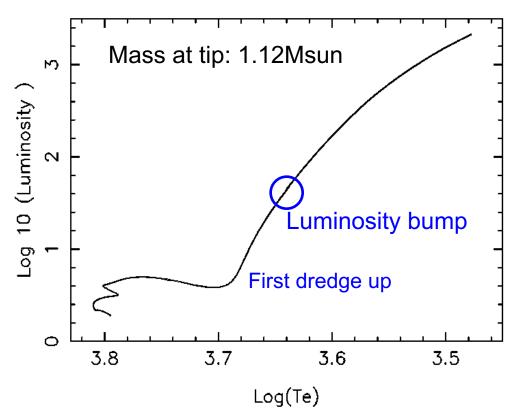
Where mixing takes place

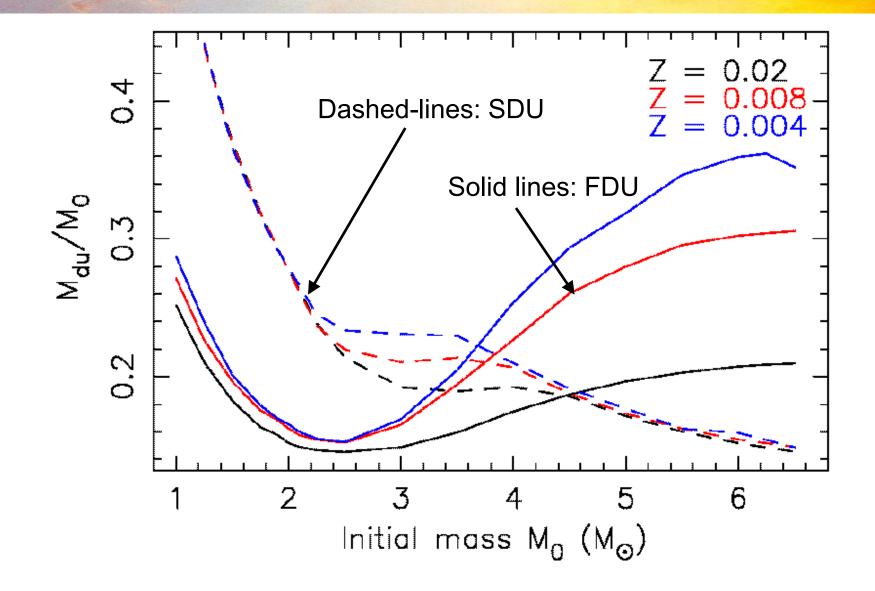


Evolution after core H-burning

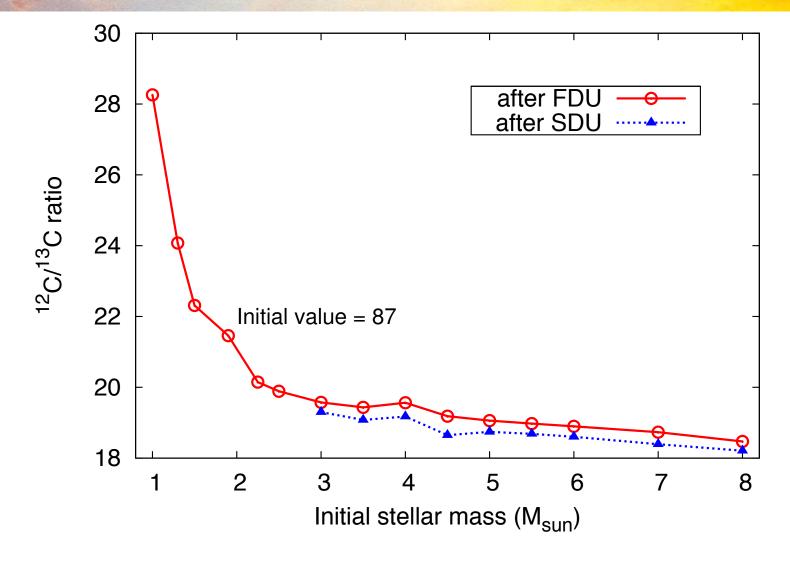
- After core H-burning has ceased, the core begins to contract
- Hydrogen burning is established in a shell around the contracting, inert He-core
- The envelope becomes convective, and moves inward into regions partially processed by previous H-burning on the main sequence
- \rightarrow This is the first important mixing event
- \rightarrow Known as the "first dredge-up"

The first dredge-up: 1Msun

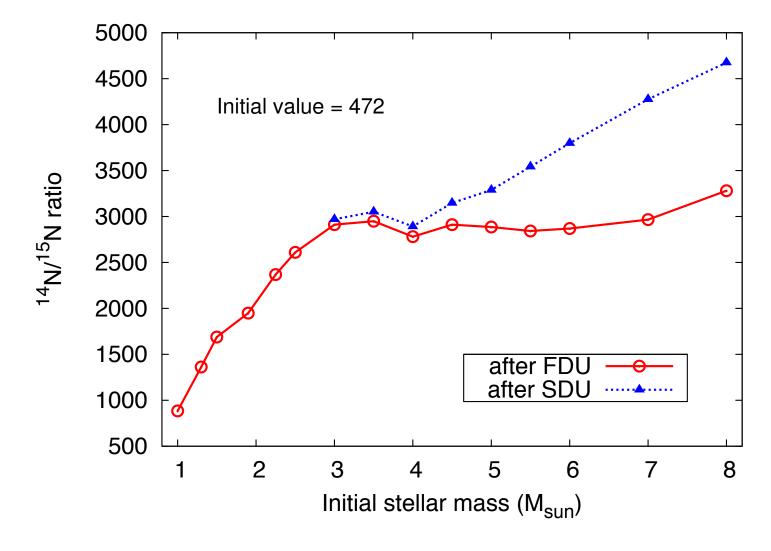

Movies from Prof. John Lattanzio's website: http://www.maths.monash.edu.au/~johnl/StellarEvolnV1/


First dredge up

- Mixes up material partially processed during the previous main sequence
- This is the first dredge-up (FDU)
- Main changes:
 - Reduction in Li, ¹²C/¹³C ratio
 - Increases in ³He, N
 - Little change to ¹⁶O but ¹⁷O increases while ¹⁸O decreases
 - Hence, ¹⁶O/¹⁷O decreases while ¹⁶O/¹⁸O increases
 - Small changes predicted for heavier elements (e.g, F, Na)

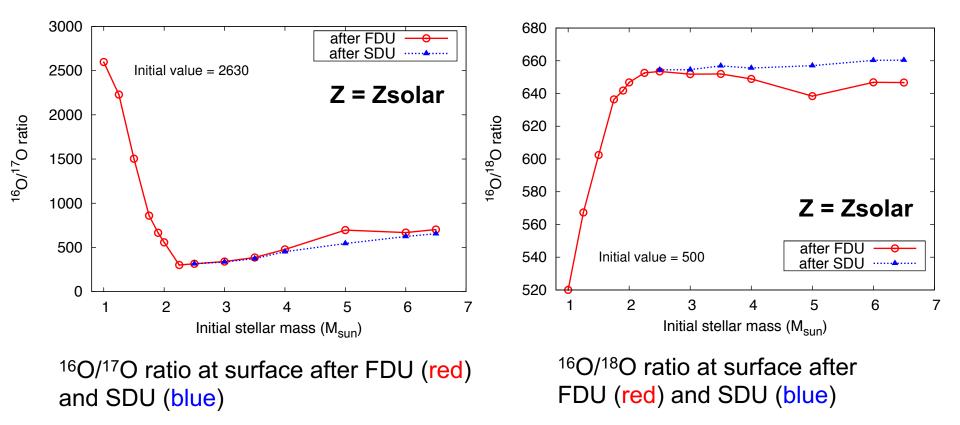

Example: 1.25Msun, Z = 0.02 model

First and second dredge-up



What do we see at the surface?

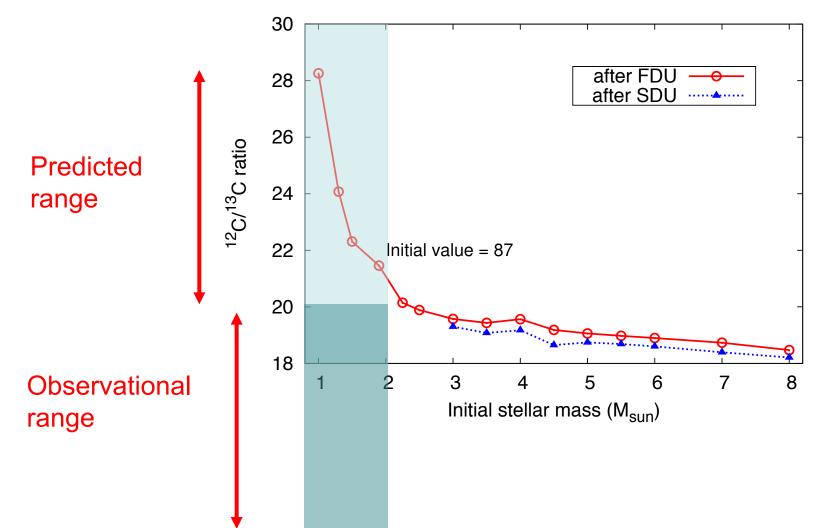
From Karakas & Lattanzio (2014)


What do we see at the surface?

From Karakas & Lattanzio (2014)

Oxygen isotope ratios after FDU

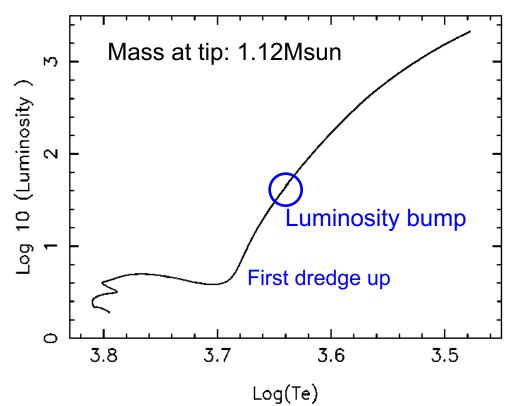
- Mixes up material partially processed during the previous main sequence
- Oxygen isotope ratios: ¹⁶O/¹⁷O can decrease by up to 80% whereas ¹⁶O/¹⁸O increases by ~30% (e.g., Boothroyd & Sackmann 1999)

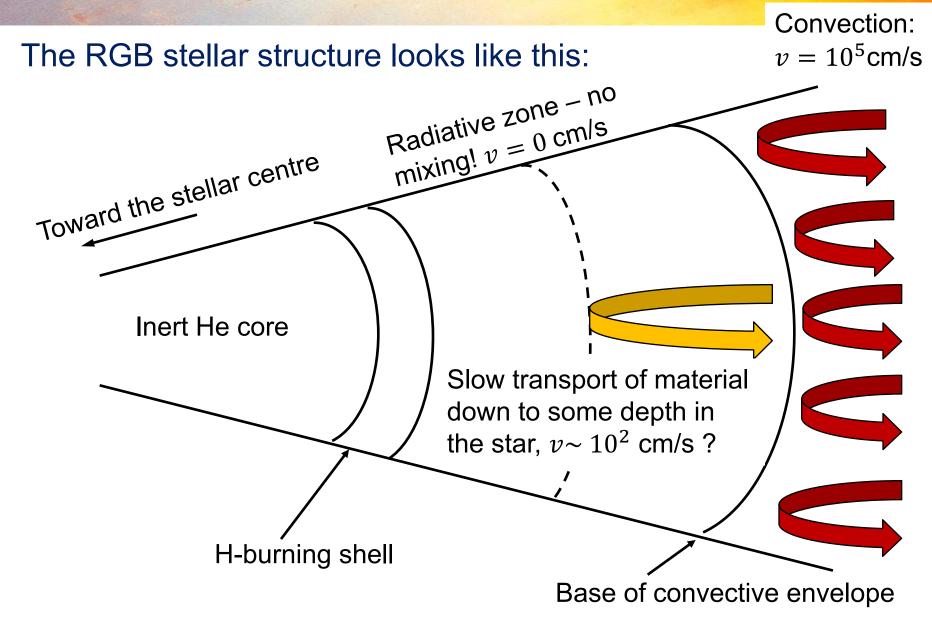

From Karakas & Lattanzio (2014)

Frist dredge-up and stellar yields

- The first dredge-up changes the surface composition but the effect on the stellar yields of most masses is small compared to the AGB phase
- By stellar yield: mass lost through stellar winds, integrated over the whole stellar lifetime
- So it includes mass lost during the RGB and the AGB (and all phases inbetween)
- This is because the AGB phase results is strong changes to the surface composition
- Except stars that do not experience mixing on the AGB, usually M \lesssim 1.2 1.5 Msun, depending on Z

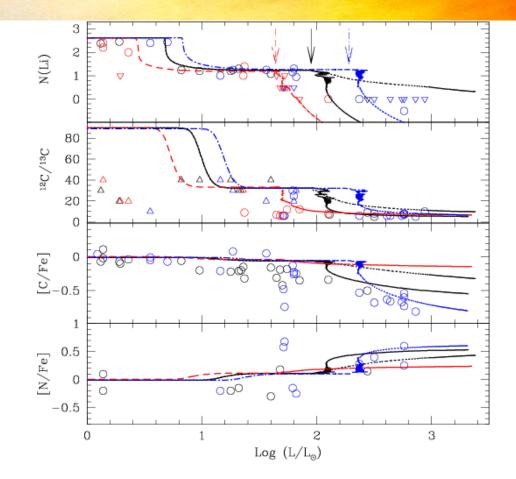
Comparison to observations


Observations of low-mass giants in the field or in clusters show that the ${}^{12}C/{}^{13}C$ ratio is less than 20 (e.g., Gilroy 1989)


Extra mixing in low-mass red giants

- M < 2Msun
- Standard stellar models:
- Only one mixing event between the main sequence and tip of the first giant branch
- The first dredge-up:
- ${}^{12}C/{}^{13}C \sim 20, C/N \sim 1.5$
- Disk FGB stars (e.g., Gilroy 1989 1991) have ¹²C/¹³C ~ 10, and C/N ~ 1.0
- Evidence that some form of chemical transport is acting in low-mass giant envelopes
- When?

Example: 1.25Msun, Z = 0.02 model



How does the extra mixing work?

Extra mixing in low-mass giant stars

- M < 2Msun
- The result of extra mixing is to mix products of CN cycle to the surface
- This results in a reduction in ¹²C/¹³C and C/N
- Lithium may also be destroyed
- The mechanism?
- We still don't know
- Rotation? Unlikely to be main driver (Palacios et al. 2006)
- Thermohaline mixing favoured in recent years

From Charbonnel & Zahn (2007)

Referenes: Smith & Tout (1992), Boothroyd & Sackmann (1999), Nollett et al. (2003), Stancliffe et al. (2009), Angelou et al. (2012), Lattanzio et al. (2015)

Thermohaline mixing

See Karakas & Lattanzio (2014)

Experiment by R. Izzard and E. Glebbeck

Effect on the overall stellar yields

Extra mixing only affects a few isotopes:

- 1. 3 He big reduction in the yield
- 2. ⁷Li reduction or production? Not clear
- ¹²C, ¹³C (C elemental abundance) C abundance down,
 ¹³C isotopic abundance up
- ¹⁴N, ¹⁵N (N elemental abundance) N abundance up, in particular ¹⁴N but ¹⁵N down
- 5. Oxygen isotopes? No evidence deep mixing is important

References: Discuss both thermohaline mixing and rotation Charbonnel & Lagarde (2010), Lagarde et al. (2011, 2012a,b – note that rotation can change the internal structure and the surface changes after FDU for a few elements e.g., N)

Core helium burning

- Following core He-ignition, there is a stable period of core helium fusion
- The coulomb repulsion is larger for He than for H
- More energy is required for fusion to occur
- This means higher burning temperatures → shorter lifetimes!
- Typical He-burning lifetimes are ~100 million years for low-mass stars (~1Msun), compared to 10¹⁰ years for Hburning
- Core He-burning lasts about 20 million years for the 5Msun, compared to 80 million years for H-burning

Helium burning

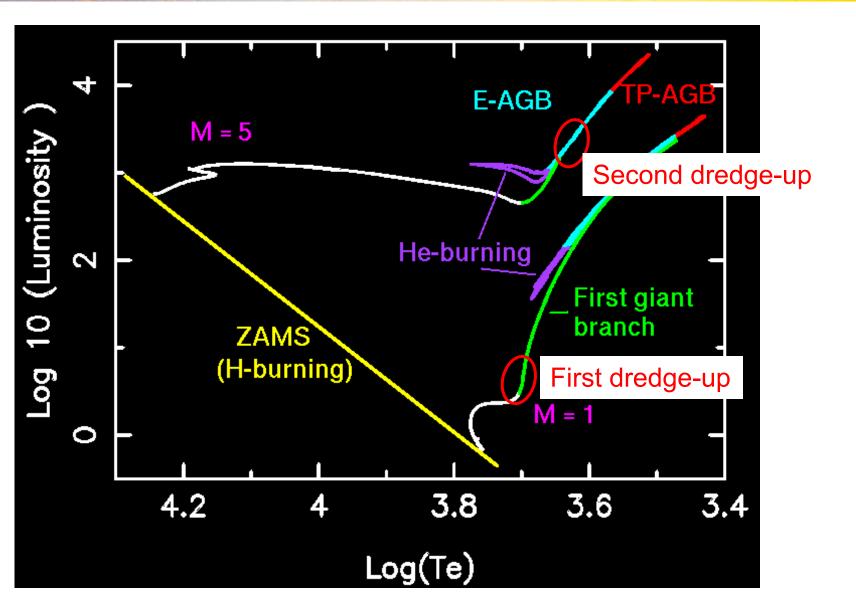
- Simultaneous collision of 3 ⁴He nuclei too rare to provide the burning rate required
- Fred Hoyle (1954) predicted a resonance in ¹²C to speed up the collision
- Hoyle's state was experimentally measured shortly after his prediction
- Typical T ~ 1-2 x 10^8 K, density ~ 10^{3-4} g cm⁻³
- The main reaction takes place in three steps:

Step 1: ${}^{4}He + {}^{4}He \Leftrightarrow {}^{8}Be$ Step 2: ${}^{4}He + {}^{8}Be \Leftrightarrow {}^{12}C^{*}$ Step 3: ${}^{12}C^{*} \rightarrow {}^{12}C + 2\gamma$

• The ¹²C^{*} indicates that the nucleus is in an excited state

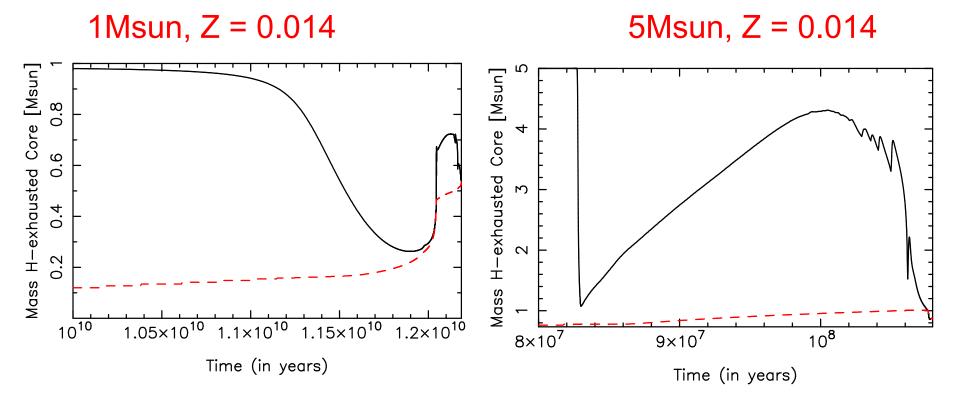
Helium burning

- At slightly higher T and density the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction occurs once a supply of ${}^{12}C$ is available
- The ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction also supplies energy
- At the end of core He-burning, the composition of the core is roughly 50% ¹²C and 50% ¹⁶O
- Although the final C/O greatly depending on the rates and can be as extreme as C:O = 0.10:0.90.
- Temperature dependence for the triple- α rate turns out to be roughly $\epsilon \propto T^{40}$!
- This means that helium burning leads to a very steep temperature gradient → convection

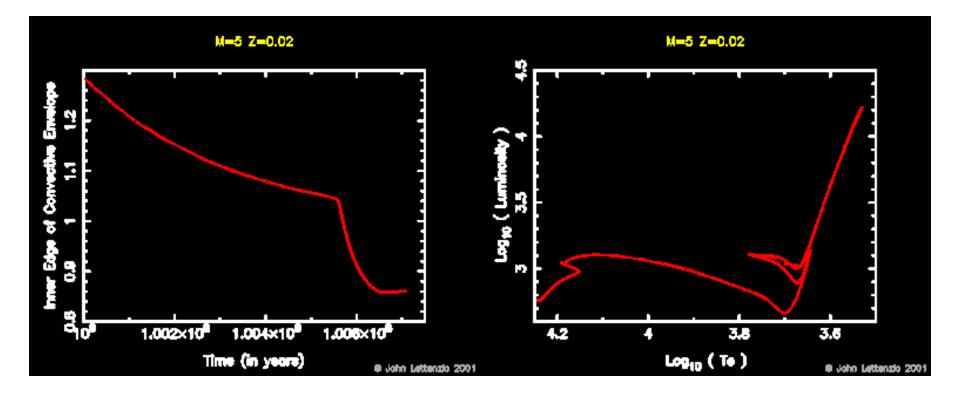

After core helium burning

- Following the exhaustion of helium, the core contracts and heats
- The composition is roughly 50% carbon and 50% oxygen,
- The core composition depends on the rates of the triplealpha (3 α \rightarrow ^{12}C) and $^{12}C(\alpha,\gamma)^{16}O$ reactions
- These reactions are difficult to determine in a laboratory
- The final mass of the C-O core depends on the details of convection, which is a big uncertainty in stellar evolution models

The early asymptotic giant branch


- Following core He-exhaustion, the star evolves up the second giant branch, or AGB
- A helium burning shell is established around the contracting C-O core, which narrows as the star evolves
- Eventually the shell becomes thin and partially degenerate
- Helium burning is unstable under such conditions → leads to thermal pulses or He-shell instabilities
- However, the early part of the AGB is the longest in time and is where the second mixing event occurs

Where mixing takes place


Second dredge up

 Convection reaches deeper during the ascent of the AGB compared to the RGB for intermediate-mass stars over ~4.5 Msun (for solar metallicity)

Structure during second dredge-up

Results for a 5 Msun, Z = 0.02 model:

