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The classical view of the Milky Way:

Thih disc

ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Moitinho.

What is the formation mechanism, relation between the various components and origin epoch?
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How do we trace Milky Way’s history ?

A e Stars are luminous story tellers of our Galactic Saga.

e Chemical abundances of a Star’s outer layers is preserved

~0.4 ————— from birth (almost).
— B B (Photospheric chemistry = ISM compositionat T _ )
(]
L
§ e Different stellar populations also retain their formation
history in their motions.
0.0 -
e Relative abundances of different populations inform us
I I : I > about star-formation in various parts of our Galaxy.
-2.0 -1.0 -0.5 0.0 (e.g. Matteucci and Brocato 1990)
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How do we trace Milky Way’s history ?
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Metallicity as proxy for age .

! ! —t——> .

-3.0 -2.0 -1.0 -0.5 0.0

<—  “old” [Fe/H] “young” ——p
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Stars are luminous story tellers of our Galactic Saga.

Chemical abundances of a Star’s outer layers is preserved
from birth (almost).

(Photospheric chemistry = ISM compositionat T _ )

Different stellar populations also retain their formation
history in their motions.

Relative abundances of different populations inform us

about star-formation in various parts of our Galaxy.
(e.g. Matteucci and Brocato 1990)



How do we trace Milky Way’s history ?

°
Are only the metal-poor stars .
exclusively old?
or

Is it always metal-poor — old &

metal-rich — young ? °
I I I I I

1 1 1 1 —> °
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Stars are luminous story tellers of our Galactic Saga.

Chemical abundances of a Star’s outer layers is preserved
from birth (almost).

(Photospheric chemistry = ISM compositionat T _ )

Different stellar populations also retain their formation
history in their motions.

Relative abundances of different populations inform us

about star-formation in various parts of our Galaxy.
(e.g. Matteucci and Brocato 1990)



How do we trace Milky Way’s history ?

Diversity in our local neighbourhood (25pc)

o O thickdise  * tramsiton O thindise e Stars are luminous story tellers of our Galactic Saga.
04:— .‘ .. @) O _: . ) .
M ® ® o 9 i e Chemical abundances of a Star’s outer layers is preserved
% 0.2 ] from birth (almost).
2t ] (Photospheric chemistry = ISM compositionat T _ )
0.0 -
[ i e Different stellar populations also retain their formation
F . history in their motions.
-0.0 —
¥ o2k . e Relative abundances of different populations inform us
bl L - . . .
£ ] about star-formation in various parts of our Galaxy
-0.4p —
-0.6L ]

-1.0 -0.5 0.0 0.5

Klaus Fuhrmann, 2011
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How do we trace Milky Way’s history ?

Diversity in our local neighbourhood (25pc)

o O thick dise X travsition O thindise e Stars are luminous story tellers of our Galactic Saga.
: o o ~ Simi | ] : .
n o % © @ % Similarly old ! ] e Chemical abundances of a Star’s outer layers is preserved
- 5 @) @ : . .
E osb GBg gt = / . from birth (almost).
= [ oa@% 5 : ] (Photospheric chemistry = ISM compositionat T, )
[ »o.o:, ) o ] birth
0.0 - -vmrmrmmr e D e @;%g"ogo 0o —

e Different stellar populations also retain their formation
history in their motions.

-0.0

e Relative abundances of different populations inform us
about star-formation in various parts of our Galaxy

-0.2

[Fe/Mg]

-0.4

IllIllIIlIllIl

e Stellar Ages needed to understand the story coherently.

-0.6 L 2 i s
-1.0 -0.5 0.0 0.5 (there could be significant overlap in chemistry and/or kinematics)

Klaus Fuhrmann, 2011
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How do we trace Milky Way’s history ?

e Stars are luminous story tellers of our Galactic Saga.

0.4 Add i 1
++++ + * ++++ e Chemical abundances of a Star’s outer layers is preserved

0.31 ’++—+\+ from birth (almost).

021 * (Photospheric chemistry = ISM compositionat T _ )

[Fe/H] envelope

e Different stellar populations also retain their formation

0.17
history in their motions.
0.0
® Relative abundances of different populations inform us

—-0.1¢+/ ) . .
about star-formation in various parts of our Galaxy

1 2 3 4 5 6 7 8 9 10 11 12
Age (Gyr)
e Stellar Ages needed to understand the story coherently.
Nepal et al. 2024a (there could be significant overlap in chemistry and/or kinematics)

Stars in solar neighbourhood (~1 kpc) show the

peak metallicity reached already at ~9-10 Gyrs ago.
See also: e.g. Miglio+2021, Dantas+2023

Samir Nepal / 2024-11-19 / Paraty



How do we trace Milky Way’s history ?

Samir Nepal / 2024-11-19 / Paraty

Things we need:

Chemical Composition
+

Positions and Kinematics
+

Ages

for a large number of stars (>10°) are necessary for the complete picture.



({E= gaia

How do we trace Milky Way’s history ? ==
- The big data

More by Guillaume in session 6.
e The RVS-CNN Catalog (Guiglion, Nepal et al. 2024 A&A).
Teff, log(g), [M/H], [Alpha/M] and [Fe/H] for >840,000 stars. (Catalog is public)

>12,000 metal-poor ([Fe/H]<-1.0) and ~19,000 super-metal-rich ([Fe/H]>0.2)
Note: Only possible with novel machine learning technique esp. low S/N spectra

. 10
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How do we trace Milky Way’s history ? e=

- The big data

e The RVS-CNN Catalog (Guiglion, Nepal et al. 2024 A&A):

Teff, log(g), [M/H], [Alpha/M] and [Fe/H] for >840,000 stars. (Catalog is public)
>12,000 metal-poor ([Fe/H]<-1.0) and ~19,000 super-metal-rich ([Fe/H]>0.2)

e StarHorse: a bayesian isochrone fitting tool to estimate distances, extinctions, stellar ages etc.
for individual stars (e.g. Anders et al. 2019,2022, Queiroz et al. 2018,2020,2021,2023)

. 11
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How do we trace Milky Way’s history ? =

- The big data

e The RVS-CNN Catalog (Guiglion, Nepal et al. 2024 A&A):

Teff, log(g), [M/H], [Alpha/M] and [Fe/H] for >840,000 stars. (Catalog is public)
>12,000 metal-poor ([Fe/H]<-1.0) and ~19,000 super-metal-rich ([Fe/H]>0.2)

e StarHorse: a bayesian isochrone fitting tool to estimate distances, extinctions, stellar ages etc.
for individual stars (e.g. Anders et al. 2019,2022, Queiroz et al. 2018,2020,2021,2023)

e 6D phase-space + StarHorse distance — Velocities and orbits using Astropy & Galpy
(McMillan 2017 potential).

. 12
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The big data: High quality sample from the RVS-CNN

e >565,000 stars with mean distance uncertainty of 2%.

® > 200,000 MSTO+SGB stars with mean uncertainty of 12% for age and 1% for distance.

Samir Nepal / 2024-11-19 / Paraty
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The big data: High quality sample from the RVS-CNN

e >565,000 stars with mean distance uncertainty of 2%.

® > 200,000 MSTO+SGB stars with mean uncertainty of 12% for age and 1% for distance.
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Validating ages: AMR for confirmed GSE members ,7—/7‘/;—%- gaia
0.0 } t g =. } } } }
—0.5F==mme___ = T
_______ o 3
~~~~~~ s
-1.071 A~5x~ T

We recover the age-[Fe/H] relation for the GSE
T candidates confirmed with the GSE globular clusters
and member stars with asteroseismic ages.

—2.0+ * GSE stars (Kinematically selected, N=90) (SeleCtEd inlzvs E Space)

O GSE GCs (Limberg+2022)
A GSE stars (Montalbdan+2021)

Also yesterday'’s talks by Davide, Angeles and

=251 SRR [fimbarg+2093] “‘.i T Stefano on GC age-metallicity relation.
---in-situ ':i
-3.0 } } } } } } } —
5 6 ¥ 8 9 10 11 12 13 14

Age (Gyr)
Nepal et al. 2024b
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The classical view of the Milky Way:

When did the thin disc form?

Thih disc

ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Moitinho.

What is the formation mechanism, relation between the various components and origin epoch?

. 16
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The oldest disc of Milky Way: (epaiet ai. 202a0)

e At high-redshift (z > 4) there have been recent
observations of cold disc galaxies with ALMA and JWST.

Rizzo+2020,2021; Tsukui & Iguchi 2021, Lelli+2023; Roman-Oliveira+2023;
Ferreira+2022; Kartaltepe+2023; Robertson+2023

Samir Nepal / 2024-11-19 / Paraty

Rowland et al. 2024
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Discovery of a dynamically cold disc at 7 =17.3
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Figure 9. As with Figure 8, but instead the ratio of ordered to random motion (the ratio of the maximum rotational velocity to the average velocity dispersion)

is plotted as a function of redshift.
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The oldest disc of Milky Way: (epaiet al. 20240)

e At high-redshift (z > 4) there have been recent
observations of cold disc galaxies with ALMA and JWST.

Rizz0+2020,2021; Tsukui & Iguchi 2021, Lelli+2023; Roman-Oliveira+2023;
Ferreira+2022; Kartaltepe+2023; Robertson+2023

® Inthe MW, several recent studies show presence of

metal-poor stars in disc orbits.

Sestito et al. 2019, 2020; Fernandez-Alvar et al. 2021; Mardini et al. 2022; Matsunaga et al. 2022;
Carollo et al. 2023; Bellazzini et al. 2024; Fernandez-Alvar et al. 2024; Re Fiorentin et al. 2024;

But see Zhang et al. 2024

Samir Nepal / 2024-11-19 / Paraty
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The oldest disc of Milky Way: (epaiet ai. 202a0)

e At high-redshift (z > 4) there have been recent
observations of cold disc galaxies with ALMA and JWST.

Rizz0+2020,2021; Tsukui & Iguchi 2021, Lelli+2023; Roman-Oliveira+2023;
Ferreira+2022; Kartaltepe+2023; Robertson+2023

® Inthe MW, several recent studies show presence of

metal-poor stars in disc orbits.

Sestito et al. 2019, 2020; Fernandez-Alvar et al. 2021; Mardini et al. 2022; Matsunaga et al. 2022;
Carollo et al. 2023; Bellazzini et al. 2024; Fernandez-Alvar et al. 2024; Re Fiorentin et al. 2024;
Gonzalez Rivera+24

But see Zhang et al. 2024
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Key questions:

Does Milky Way have an ancient disc?

When did this MW disc form and
did it begin as thin disc or the thick disc?
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The metal-poor thin disc: (epai et al. 2024n)

3001
200+ !

_102
€ 46D
& @
= g
< 1012

—100- f":
R A i =
YL Sequoiat 1) - i _ =
-200t CUERCY U L2 [FeHI<A1.0, Zoax < L kpc, Vp > 180: 193 %
: _:;. _____ il - o [Fe/H]<-1.0, Zmax <1 kpc, V4 < 180: 444 100
T 7 st * RR Lyrae (Matsunaga et al. 2022)
_300 j - . + . — : : ; ;
=-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
[Fe/H]

We kinematically selected metal-poor stars to find large number of them in thin disc orbits.

(See also Fernandez-Alvar et al. 2024)

. 20
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The metal-poor thin disc: (epai et al. 2024n)

3007

2007

V¢ (km/s)

—1007

—2007

~300+
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100t

Just edge of the velocity distribution?

[Fe/H]<-1.0, Zmax <1 kpc, V> 180: 193
» [Fe/H]<-1.0, Zmax <1 kpc, Vp < 180: 444
* RR Lyrae (Matsunaga et al. 2022)
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The metal-poor thin disc: (epai et al. 2024n)

V¢ (km/s)

3001 ©
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100t
0+
—1007
—2007 e [FeMMI<-1.0, Zyax <1 kpe, Vs >180: 193
E . - o [Fe/H]<-1.0, Zmax <1 kpc, Vp < 180: 444
& RS * RR Lyrae (Matsunaga et al. 2022)
—300t + — + + +
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Metal-poor to Metal-rich

Significant fraction of old stars with wide
[Fe/H] range already in thin/thick disc
orbits at the oldest ages.
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Validating ages: Beautiful pdfs!

Nepal et al. in preparation
StarHorse catalog with age,
distance, extinction, etc.
coming soon...

Samir Nepal / 2024-11-19 / Paraty

d [kpc] [Z/H] Age [Gyr]

Av [mag]

Mact [Mo] = 0.84+392

\

Al

Age [Gyr] = 12.49%378

i

[Z/H] = —0.71333%

i

N

d [kpc] = 0.59381

A

Ay [mag] = 0.11%3:38
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Validating ages: Beautiful pdfs!

Mact [Mo] = 0.97#8:31

i

Age [Gyr] = 12.93342

I

Nepal et al. in preparation

StarHorse catalog with age,
distance, extinction, etc.
coming soon...
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Validating ages: Beautiful pdfs!

147 = [14<Age<13]
— [13cApe<]?]

= [11<Age<10]
— [10<Age<9]

Nepal et al. in preparation L2y [12<Age<I1]
StarHorse catalog with age, 10
distance, extinction, etc. »
coming soon... 7 0.8
- .-

0.4 1

0.2 1

0.0 F———

8 9

Ages are precise enough to differentiate between e.g. 10-11 Gyr and 11-12 Gyr!

Samir Nepal / 2024-11-19 / Paraty
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high'z diSCS Of MW: (Nepal et al. 2024b) N

b) = T T
N - .

037 w7
100 10! 102 " :

high and low-[a/Fe]
populations overlap in
ages and show coeval

thin and thick discs.
More work needed with
detailed chemical abundances!

[a/Fe]

27
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high'z diSCS Of MW: (Nepal et al. 2024b)

b)
0.371

N

10° 10! 102

Hints of a young bar (Nepal et al. 2024a)

Samir Nepal / 2024-11-19 / Paraty

high and low-[a/Fe]
populations overlap in
ages and show coeval

thin and thick discs.

More work needed with
detailed chemical abundances!
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high'z diSCS Of MW: (Nepal et al. 2024b)

low-[a/Fe] thin disc stars
with asteroseismic ages
at ~10% precision.

Montalban et al.
(in preparation)

See also:
Beraldo e Silva+2021 with
APOGEE

Ghent+2024 with
Gaia-ESO

D'Orazi et al. 2024 with
metal-rich RR Lyraes

2 < 6 8 10 12 14

. 29
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high-Z diSCS Of MW: (Nepal et al. 2024b)

Samir Nepal / 2024-11-19 / Paraty
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high-Z diSCS Of MW: (Nepal et al. 2024b)

redshift =0 1 246 20
Vs low-[a/Fe]
« high-[a/Fe] 2
407 . high-a stars (Miglio+2021) £
'g ¢ z = 4.5 galaxies (Rizzo+2021) % We identify GSE merger at
~ 30 S ~9-10 Gyr ago leads to
b>“ & splashing of both old thick
2 and thin discs.
20+ . T
M & — Kinematic selection of
GSE and Splash should find
10 1 1 i i I } . :
3 4 6 8 10 15 14 !:)oth old high & low-[a/Fe]
Age [Gyr] in-situ stars.
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Simulations of high-z galactic discs:

Early disc formation is still considered a
challenge in cosmological simulations !!
(e.g. See Hopkins+2023)

But progress is being made

Samir Nepal / 2024-11-19 / Paraty
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Simulations of high-z galactic discs:

THE ASTROPHYSICAL JOURNAL, 928:106 (15pp), 2022 April 1 https://doi.org/10.3847 /1538-4357 /ac558e

© 2022. The Author(s). Published by the American Astronomical Society.
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(see also e.g. Kohandel et al 2023 (SERRA), Kretschmer+2022)
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How Early Could the Milky Way’s Disk Form?
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Took a TNG50 simulation and re-simulated with detailed modeling of cold
interstellar medium (ISM) formation, coupled with on-the-fly UV radiative
transfer, turbulence-regulated star formation, and stellar feedback.
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Main Conclusions:

® We can leverage Machine Learning (and Al in the near future) to the improve scientific output of large surveys
like Gaia. (for example: Guiglion, Nepal et al. 2024) — Guillaume’s Talk in Session 6

e Stellar ages crucial for Galactic Archaeology, stellar metallicity as a proxy for a Galactic clock is unreliable!!
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Main Conclusions:

® We can leverage Machine Learning (and Al in the near future) to the improve scientific output of large surveys
like Gaia. (for example: Guiglion, Nepal et al. 2024)

e Stellar ages crucial for Galactic Archaeology, stellar metallicity as a proxy for a Galactic clock is unreliable!!!

The old thin disc: (Nepal et al. 2024b)

MW thin disc starts forming within the first Billion year with metal-poor to super-solar [Fe/H].

e Thin and thick discs appear coeval with significant overlap at the oldest ages (14 — 10 Gyrs ago).

e high-[a/Fe] thick disc g,, as 35 km/s, the low-[a/Fe] disc at same age range has a O, lower by 10 to 15 km/s.
Our old thin disc appears similar to those estimated for the high-z disc galaxies.
e The Splash includes both old (> 9 Gyr) high-and low-[a/Fe] populations and extends to a wider [Fe/H] range

reaching super-solar [Fe/H].
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