

INSTITUTO DE ASTROFISICA PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

A secondary dependence of the mass-metallicity relation on the metallicity gradients

Patricia Tissera

 Cosmological simulations + chemical evolution subgrid physics are powerful tools to study galaxy formation (e.g. Mosconi+2001, Lia+2002)

Evolution of a galaxy and its environment.

Star formation, feedback, mergers/ Interactions, gas accretion, among other environmental processes have an impact on the metallicity distributions of the ISM an stellar populations in galaxies.

There is a coexistence of galaxies and their environment from very early stages of evolution.

Inside-out formation: Negative SF gas-phase metallicity gradients

Negative metallicity gradients are reproduced in simulations and models where the galaxies formed inside-out (e.g.Pilkington+2012; Taylor & Kobayashi 2017;Ma+2017,Tissera+20 16;Hemler+2021)

Inside-out formation: Negative SF gas-phase metallicity gradients

Negative metallicity gradients are reproduced in simulations and models where the galaxies formed inside-out (e.g.Pilkington+2012; Taylor & Kobayashi 2017;Ma+2017,Tissera+20 16;Hemler+2021)

r [kpc]

CIELO simulations; Tapia-Contreras+2024 in prep

Evolution of the metallicity gradients during galaxy-galaxy interactions

Mergers/Interactions shape the star formation activity and metallicity distributions depending on the gas richness, orbital parameters, mass ratio (e.g. KH91, Perez+2006; Rupke+2010;Sillero+2017; Di Matteo+2009; Moreno+2019; Bustamante+2019)

Evolution of the metallicity gradients during galaxy-galaxy interactions

Mergers/Interactions shape the star formation activity and metallicity distributions depending on the gas richness, orbital parameters, mass ratio (e.g. KH91, Perez+2006; Rupke+2010;Sillero+2017; Di Matteo+2009; Moreno+2019; Bustamante+2019)

The impact of SN feedback + AGN feedback

Tissera+2016

Inverted (positive) metallicity gradients can be produced by strong SN feedback and they are preferentially found in low mass galaxies (log M< ~10 Mo.

Evolution of the metallicity gradients across time

e.g. Gibson+13, Tissera+19 + 22

Positive metallicity gradients: galaxy interactions/strong gas inflows + feedback

Negative metallicity gradients are predicted by an inside-out galaxy formation scenario

e.g. Tissera+2016,Taylor & Kobayashi +2017, Hemmler+2022.

The relation between the MZR and the metallicity gradients in EAGLE simulations and the MaNGA survey

Strong negative gradients —-> recent strong SF, higher metallicity, may provide signals of outflows

Metallicity gradients, sSFR and galaxy compactness in EAGLE simulations and the MaNGA survey

 $\Sigma_* \propto M_*/R_{
m eff}^2$

Metallicity gradients, sSFR and galaxy compactness in EAGLE simulations and the MaNGA survey

CIELO simulations

The CIELO project (Tissera et al. In prep.) aims to study galaxy formation in the field focusing on the chem-dynamical properties (collaboration: L. Bignonge, S. Pedrosa, N.Padilla, R. Dominguez, E. Sillero).

Zoom-in simulations:

- P-GADGET3
- Multiphase model (Scannapieco+2006).
- Star formation model (based on the KS law).
- Metal-dependent cooling.
- IMF: Chabrier (Chabrier et al. 2003).
- Chemical Evolution model traces 12 elements. Includes SN II and SN Ia feedback (Mosconi+2001). New runs 22 elements + AGBs.
- See Rodriguez+2022, Cataldi+2023, Casanueva-Villavicenio+2024 for results of the CIELO Project.

40 central galaxies: 10^{8.5}-10^{10.5} Mo

r [kpc]

We search for the best quantification of the shape of the metallicity profiles. At z=0, 33% linear, 41% outer-broken, 15% inner-broken, 10% double-broken profiles

Chemical abundances to unveil formation channels In different galaxy components

Jenny Gonzalez-Jara

Bulges

Stellar haloes \bullet

Ignacio Muñoz

Benjamin Silva

• Stellar Discs

Simulated Galaxies with $M_* = [10^8, 10^{10.5}]M_{\odot}$ from the CIELO simulations

Conclusions

- environment.
- Gas-phase gradients reflect the state of the ISM within about 1-2 Gyr.
- frequency of inverted gradients and stronger negative gradients.
- galaxy interactions.
- Breaks are fingerprints of different physical rocesses, many of them highly coupled:
- A. Bars and gas inflows
- B. Different stages of evolution of galaxy interactions
- C. Outflows
- **D.** Galactic Fountains
- E. Metal-rich/Metal-Poor Gas accretion from the CGM
- F. Accreted material from companion or disrupted satellites

• Metallicity gradients of the star forming gas-phase are shaped by mergers, gas inflows, bars, and the

• At higher z, higher frequency of interactions, unstable gaseous discs, gas inflows, can explain higher

• Strong negative and strong positive metallicity gradients can be related to either strong accretion or

Are there fossil records imprinted in the chemical abundances of the stellar populations ?

Future perspective

GENERATE SPECTRA (e.g.Tissera+1997, Nani+2022,Gang+2023, Barrientos-Acevedo+2023; Cornejo+2025)

GALACTIC PHYLOGENETICS

