The evolution of galactic disk:

New insights with the Gaia-APOGEE-Kepler giant stars and the Besançon galaxy model

Nadège Lagarde Laboratoire d'Astrophysique de Bordeaux

Introduction

Spectroscopy

Surface properties of stars chemical abundances ; T_{eff} ; gravity ; [Fe/H]

Gaia data Astrometry ; Photometry ; Spectroscopy

Distances ; proper motions ; Magnitude ; kinematic ; [Fe/H] indicators Some chemical abundances GSPspec *Recio-Blanco et al* (2023)

A great diversity of chemical compositions, ages and masses to probe stellar and Galactic evolutions

Rich observational context

Astrometry Photometry Spectroscopy

Magnitude [Fe/H] indicators Some chemical abundances

Stellar evolution

Transport processes and their impacts on :

 \checkmark the stellar structure:

- => Effects on chemical profiles
- => Effects on asteroseismic quantities
- => **Stellar ages**, radius and mass of field stars

 \checkmark the surface properties:

- => Surface chemical abundances
- => Position in the HRD diagram

=> **Age determination** of (open and globular)

Rich observational context

Spectroscopy

Surface properties of stars chemical abundances; T_{eff} ; gravity ; [Fe/H]

Asteroseismology

Properties of stellar interiors Mass ; Radius ; Age Evolutionary stage ; Core rotation Period

Gaia data

Astrometry Photometry Spectroscopy

Distances ; proper motions ; kinematics Magnitude [Fe/H] indicators Some chemical abundances

Complementary properties of stars at different ages

Stellar evolution

Lagarde et al 2024 A&A 684A 70L

Rich observational context

Spectroscopy

Surface properties of stars chemical abundances; T_{eff} ; gravity ; [Fe/H]

Asteroseismology

Properties of stellar interiors Mass; Radius; Age Evolutionary stage ; Core rotation Period

Gaia data

Astrometry Photometry Spectroscopy

Distances ; proper motions ; kinematics Magnitude [Fe/H] indicators Some chemical abundances

Stellar **Evolution**

Complementary properties of stars at different ages

All kind of observations probe different stellar populations in the Milky Way

✓ To investigate the properties of the stellar populations of the MW (e.g., thin/thick discs) => Relations between velocities and age, [Fe/H], $[\alpha/Fe],...$

the MW

Laboratoire d'Astrophysique de Bordeaux - N. Lagarde

Stellar evolution

Lagarde et al 2024 A&A 684A 70L

Formation and Evolution of stellar populations

=> IMF ; SFR of stellar populations ?

✓ To provide clues to understand the chemical evolution of

=> Relations [X/Fe] vs Age in different stellar populations

Our sample

Spectroscopy

Spectroscopic parameters coming from the APOGEE DR14

Asteroseismology

Accurate ages and masses deduced from the asteroseismic measurements

Kepler

~5000 giant stars :

[Fe/H], [α/Fe], Mass, Age dist., \mathbf{V}_{R} , \mathbf{V}_{φ} , \mathbf{V}_{Z}

Gaia data

StarHorse distances from *Queiroz et al*. (2020)

Galactic velocities are computed following the method developed by *Gaia collaboration et al* (2018)

Lagarde et al. 2021

Our sample

Spectroscopy

APOGEE

Spectroscopic parameters coming from the **APOGEE DR14**

~5000 Asteroseismology giant stars : Accurate ages and masses deduced from the asteroseismic measurements [Fe/H], [α/Fe], Kepler Mass, Age dist., V_R , V_{φ} , V_Z

Gaia data

StarHorse distances from *Queiroz et al.* (2020)

Galactic velocities are computed following the method developed by *Gaia collaboration et al* (2018)

Lagarde et al. 2021

Miglio et al (2021)

Selection criteria:

- APOKASC criteria
- the mass of clump stars, $M_{clump} \ge 1.2 M_{\odot}$
- the radius of RGB stars, $RGB < 11R_{\odot}$
- Used models including microscopic diffusion.

Age distributions

APOKASC catalog Pinsonneault et al. (2018)

Spectroscopy

Spectroscopic parameters coming from the **APOGEE DR14**

Lagarde et al. 2021

APOKASC catalog Pinsonneault et al. (2018)

• **APOKASC** age distribution peaks around 1-2 Gyr => not seen in M21 sample

Lagarde et al. 2021

APOKASC catalog Pinsonneault et al. (2018)

• **APOKASC** age distribution peaks around 1-2 Gyr => not seen in M21 sample

• Both samples:

A small sign of SFR increase between 2 and 5.5 Gyr

Between 2 and 3 Gyr = An increase in star formation (e.g., Cignoni et al 2006, Mor et al 2019, Donlon et al 2020)

However low stellar ages are strongly dependent on hydrodynamical processes included in stellar evolution models.

=> Need to be confirmed with larger seismic sample.

Miglio et al (2021)

Lagarde et al. 2021

Our sample

Spectroscopy

Spectroscopic parameters coming from the **APOGEE DR14**

Lagarde et al. 2021

Main goals

1) To discuss the main chrono-chemo-kinematics relations to highlight key constraints to MW evolution

Need to highlight selection bias

2) To highlight differences between observations and Galactic theory **using a stellar population** synthesis model.

Features not well reproduced by the mock catalog can reveal missing physical processes and improve our understanding of Galactic evolution..

Need to take into account selection function

How to deal with different surveys?

Stellar populations synthesis model

Simulates the properties of stars in our Galaxy **by accurately reproducing the** selection biases on observables (selection functions and observed errors).

Theories models predictions

How to deal with different surveys?

Stellar populations synthesis model

Simulates the properties of stars in our Galaxy **by accurately reproducing the** selection biases on observables (selection functions and observed errors).

Laboratoire d'Astrophysique de Bordeaux - N. Lagarde

Theories models predictions

Galactic disc populations

• Isolating « common » thick disc, two density peaks appears. Already mentioned by *Adibekyan et al* (2013) and *Anders et al* (2018)

Lagarde et al. 2021

• Isolating « common » thick disc, two density peaks appears. Already mentioned by *Adibekyan et al* (2013) and *Anders et al* (2018)

Lagarde et al. 2021

Age-metallicity relations

- Thin disc both samples show a flat age-metallicity relation
- h α mr thick disc No correlation between the stellar age and metallicity
- h*α*mp thick disc While for the age-metallicity relation is flat for the APOKASC sample, the M21 sample shows a negative gradient.

Lagarde et al. 2021

Laboratoire d'Astrophysique de Bordeaux - N. Lagarde

Thin disc : The older the thin disc population, the higher velocity dispersion => **Secular evolution in the disc (***e.g., Spitzer & Schwarzschild* 1951;*Sellwood* 2014)

Lagarde et al. 2021

Inputs

σ_Z vs Age

constrained with RAVE survey (Kordopatis *et al 2013a)* More details Robin et al. 2017

No merger and radial migration is included

At given age, σ_Z is **higher** in hamp thick disc compared to the thin disc with the hamr thick disc in between

• thin disc / hamp thick disc => a different history imprinted in their kinematics (e.g., Minchev et al 2013; Miglio et al 2021).

Lagarde et al. 2021

Inputs

σ_Z vs Age

constrained with RAVE survey (Kordopatis et al 2013a) More details Robin et al. 2017

No merger and radial migration is included

hamp thick disc : max in the σ_Z behavior at ~8 Gyrs not predicted by the BGM => not induced by sample selection

Lagarde et al. 2021

Inputs

σ_Z vs Age

constrained with RAVE survey (Kordopatis et al 2013a) More details Robin et al. 2017

No merger and radial migration is included

hamp thick disc : max in the σ_Z behavior at ~8 Gyrs not predicted by the BGM

=> not induced by sample selection

=> could suggest a more complex chemo-dynamical scheme (mergers and radial migration effects, see *Minchev et al* 2013, 2014*a*, *b*)

Lagarde et al. 2021

Inputs

σ_Z vs Age

constrained with RAVE survey (Kordopatis *et al 2013a)* More details Robin et al. 2017

No merger and radial migration is included

Spectroscopy

Spectroscopic atmospheric parameters

Abundances ¹²C/¹³C C, N, O

Asteroseismology

Accurate ages and masses deduced from the asteroseismic measurements Evolutionary stages with $\Delta \Pi_{l=1}$

Gaia data

Luminosity, Spectroscopy, Kinematics

Lagarde et al. 2024

Spectroscopy

Spectroscopic atmospheric parameters

Abundances ${}^{12}C/{}^{13}C$ C, N, O

Asteroseismology

Accurate ages and masses deduced from the asteroseismic measurements Evolutionary stages with $\Delta \Pi_{l=1}$

Golden sample

71 giant field stars

Sub-sample of giants with better observational constraints

Gaia data

Luminosity, Spectroscopy, **Kinematics**

Lagarde et al. 2024

Lagarde et al. 2024

Lagarde et al. 2024

Stellar population synthesis model (e.g., Lagarde et al. 2017, 2019)

Thermohaline instability

Changes the surface abundances of chemical elements such as Li, ³He, ¹²C, ¹³C, ¹⁴N but leaves the O values unchanged

Thermohaline instability is more efficient for **lower-mass and** metal-poor giants (e.g., Lagarde et al 2019)

Lagarde et al. 2024

What about considering the different stellar populations?

Lagarde et al. 2024

Thin disc stars **Thick disc stars**

What about considering the different stellar populations?

Lagarde et al. 2024

Laboratoire d'Astrophysique de Bordeaux - N. Lagarde

Thin disc stars Thick disc stars

What about considering the different stellar populations?

Lagarde et al. 2024

Thin disc stars **Thick disc stars**

N abundances for thick disc stars not very explain => Need a larger sample of thick disc stars with strong chemical constraints

Conclusions

Lagarde et al. 2017

to highlight selection biases in the observed sample and also mechanisms reveal by observations and not included in the model

Lagarde et al. 2021

- (1) Probably, a small sign of SFR increase between 2 and 5.5 Gyr in both samples remains to be confirmed with larger seismic sample.
- (2) a flat age–metallicity relation for the thin disc
- **more complex chemo-dynamical scheme** to explain the data (e.g., mergers and radial migration effects).

Lagarde et al. 2024

- mixing explain these trends in an exceptional way
- (2) Spectroscopic analysis shows that low ¹² C/¹³ C values are correlated with low C/O and N/O **Pb** : N abundances for stars belonging to the thick disc => Need more thick disc stars with all observational constraints...

Contact me !

nadege.lagarde@u-bordeaux.fr

(3) Different behaviours of σ_Z with age in the BGM simulations and in the observations, inducing a

(1) ¹²C/¹³C at the surface of **core He-burning stars increases with [Fe/H] (and M)** while it decreases with stellar age. Simulations done with the BGM and including the effects of thermohaline

• **C,N,O in the thick disc** with larger samples of APOGEE survey (or GALAH DR4)

Lagarde, N et al. in prep.

• Studying stellar properties chrono-chemo-kinematics relations with different surveys in the Milky Way such as GALAH, LAMOST, APOGEE with Kepler, K2 and TESS survey

log(N/O)35 0.2 30 -0.2 25 $^{12}{
m C}/^{13}{
m C}$ -0.420 -0.6 -0.8 -1.2 -1.4 0.5 -2-1.5-0.5[Fe/H]

+

PRobing the origIns of the Milky WAy's oldest stars

International Collaborative Research Project

Swiss National Science Foundation

Asteroseismology Age determinations

C. Charbonnel Departement of astronomy at Geneva University

1 Postdoc ~2-4 yrs