The Galactic Halo's Contribution to Inner Galaxy Stellar Populations

Maddie Lucey (UPenn)

Outer Halo

Inner Halo

90°

B/P Bulge

Edge-on disk

Outer Halo

Classical Bulge?

Inner Halo

90°

B/P Bulge

Edge-on disk

Metal-poor component is <5% of total stellar mass

Ness+2013

The COMBS Survey: Chemical Origins of Metal-poor Bulge Stars COMBS I:

Detailed chemical abundances of 26 metal-poor bulge stars using high resolution **UVES** spectra

Lucey+2019

Dynamics and metallicity estimates of ~500 stars to determine bulge membership

Lucey+2021

COMBS III:

COMBS II:

Chemical abundances of ~500 metal-poor bulge stars with midresolution GIRAFFE spectra

Lucey+2022a

The COMBS Survey: Chemical Origins of Metal-poor Bulge Stars COMBS I: COMBS III:

Detailed chemical abundances of 26 metal-poor bulge stars using high resolution UVES spectra

Lucey+2019

COMBS II: Dynamics and metallicity estimates of ~500 stars to determine bulge membership

Lucey+2021

Chemical abundances of ~500 metal-poor bulge stars with midresolution GIRAFFE spectra

Lucey+2022a

COMBS II Orbit Simulations

Bayesian Probabilistic Analysis

Lucey+2021

COMBS II Orbit Simulations

Bayesian Probabilistic Analysis

Alice Burington-Luna

NSF Graduate Research Fellow University of Chicago

Lucey+2021

How much halo do we expect in the inner Galaxy, and what does it mean?

How much halo do we expect in the inner Galaxy, and what does it mean?

Look to Cosmological Zoom-in Simulations....

How much halo do we expect in the inner Galaxy, and what does it mean?

Look to Cosmological Zoom-in Simulations....

Specifically, FIRE-2 and Auriga

How to define the inner halo....

z=0.00

With dust

NFW scale radius

NFW scale radius

Cosmological Zoom-in Simulations....

1. FIRE-2 Isolated 7 galaxies

2. FIRE-2 Pairs 3 set of pairs 6 galaxies

3. Auriga 7 galaxies

500 kpc

 $\operatorname{Simulation}$

Auriga L3 FIRE-2 Sui

Garrison-Kimmel+2019

$Feedback$ [M $_{\odot}$]	$[\mathbf{M}_{c}]$
3 2017 AREPO zoom yes $5 \times 10^{\circ}$	4 6 × 1
ite 2017 GIZMO zoom no 3.5×10^{-10}	$0^4 7.1 \times$

Parameterization of stellar density profile

 $\rho_{0,H} = 6.74 \times 10^8$, $r_H = 1.4$, $\varphi_0 = 3.74$, m12i 10¹⁰ 10⁶ $X)/M * (< r_{scale})$ 0 10 ž 20 R (kpc)

$\rho_* = \rho_{0,D} e^{-r/r_D} + \rho_{0,H} / (1 + (r/r_H)^{\alpha})$

r_{scale}) $\rho_{0,H} = 3.12 \times 10^8$, 20 R (kpc) MDM

Parameterization of dark matter density profile

 $\rho_{DM} = \rho_{0,H} / (1 + (r/r_H)^{\alpha})$

(M_o/kpc³) r_н = 1.02, $\alpha = 1.87$ $\widehat{\mathsf{X}}$ 20 R (kpc) ρον Lucey+2024

Summary of Conclusions

Inner Galaxy Metal-Poor stars inform earliest epochs of Milky Way formation

Most very metal-poor stars in the inner Galaxy are actually just halo interlopers Lucey+2021

Inner minor-axis stellar density profile is uncorrelated with accretion history but instead follows the dark matter potential well

Lucey+2024

