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The Milky Way grew through dozens of mergers over billions of years.

How can we precisely study its formation history, from the first small galaxies until today?
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We galactic archaeologists study the history of the Milky
Way Galaxy by observing the old stars we can find today.

My research is in understanding the little
things; relics from the first small galaxies that
merged in order to create the Milky Way.
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13 billion year old stars can be found in the Milky Way today
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13 billion year old stars can be found in the Milky Way today

The chemical abundances of ancient stars are
Big- . windows into early galaxy and star formation

. ~13 billion years
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We find and classify fossils through
chemical abundances

drawn by Jenny O’'Grady, MassArt
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Stellar chemical abundances of old stars contain information about early galaxy
formation and chemical enrichment
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-> we need simulations with more detailed stellar chemical abundances
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High-resolution spectra for 1000s of stars with much more to come!

GALactic Archaeology
with HERMES
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Aeos, one of the horses that pulls

the Sun god across the sky

AEOS SIMULATIONS

z =29.29




Detailed evolution of ~100 simulated galaxies from the first few hundred Myr of the universe
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External enrichment

Early, small galaxies have very small
potentials -> struggle to retain their gas
and metals

Galaxies in cluster environments freely
share gas and function like a larger
system rather than individual galaxies

Brauer et al. (2024)
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METALS EXTEND FAR BEYOND VIRIAL RADIUS
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SIGNIFICANT METAL LOSS IN HALOS < 107 M,
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the chemical abundances of the stars in the simulation trace their origins

Progenitor 1
Progenitor 2
Progenitor 3
Merged Galaxy

gas projection showing a merger of three

systems at z~15 Brauer et al. (2024)
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the chemical abundances of the stars in the simulation trace their origins
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scatter also exists within galaxies from different nucleosynthetic sources and
Inhomogeneous mixing
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-> next steps: untangle how much observed scatter we expect to originate from

galaxy mergers vs. different nucleosynthetic sources Brauer et al. (2024)
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Impact of Pop Ill Initial Mass Function (IMF)
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We also ran simulations with different Pop [l IMFs:

Aeos10: M., =10 Mg, up to 100 Mg
Ae0s20: M., = 20 Mg, up to 300 Mg

This resulted in the simulation volume of Aeos20

jonizing much faster than Aeos10, mostly due to the
contributions of a few extremely massive Pop ||
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Impact of Pop Ill Initial Mass Function (IMF)
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The higher ionization suppressed the formation of the smallest
galaxies, so Aeos20 has far fewer galaxies of <=100 solar masses
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Impact of Pop Ill Initial Mass Function (IMF)
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The mass distribution of Pop Il
significantly affects the fraction of
CEMP stars
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Metals from Pop Il enrichment
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How does Pop Il enrichment translate into the
chemical abundances of the first-generation
Pop Il stars?

< ~20 galaxies have begun Pop Il at the end of

the sims, shown here at the abundances of
the first-gen low-mass Pop Il stars.
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Metals from Pop Il enrichment
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How does Pop Il enrichment translate into the
chemical abundances of the first-generation
Pop Il stars?

< ~20 galaxies have begun Pop Il at the end of
the sims, shown here at the abundances of
the first-gen low-mass Pop |l stars.

Alpha elements (CNO) increased, even-odd
differences (Mg vs Na)

Significant scatter! Lots of variation between
different first-gen Pop Il galaxies

23



SUMMARY OF THE
FIRST AEOS SIMULATIONS

star-by-star cosmological galaxy simulations tracing 10 metals +
10 additional metal tracer fields; Pop Ill enrichment; metal mixing

- the chemical abundances of stars trace their origins in different galaxies . i

- early galaxies frequently share gas and metals, leading to examples of external enrichment
(galaxies that start star formation with Pop II)

- small galaxies are significantly suppressed by increased amounts of ionizing radiation, . é e
making them sensitive to different Pop Il initial mass functions P
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- Pop lll enrichment & how this leads to the abundances of first-gen Pop Il stars [ ] | }
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SUMMARY OF THE
FIRST AEOS SIMULATIONS

star-by-star cosmological galaxy simulations tracing 10 metals +
10 additional metal tracer fields; Pop Ill enrichment; metal mixing

UPCOMING:
- Zoom simulations of a suite of ultra-faint dwarf galaxies

- Comparisons with stellar halo abundance data and dwarf galaxy abundance data
- Origins of observed abundance scatter
- Estimates of low-mass end of Milky Way assembly history

- Origins of different metals in metal-poor stars
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SUPERNOVAE FROM THE FIRST STARS

7z = 1542

z=29.29
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AEOS SIMULATIONS

Running with modified version of Enzo
(Bryan et al., 2014; Brummel-Smith et al., 2019)

Fiducial cosmological simulation:
1 Mpc box,
gas resolution up to 1 pc,
individual particle for every star >2 M,
Pop Ill stars & enrichment,
redshift =130 to 14 (300 Myr)
zooms that will run to redshift 6,
~100 star forming halos

Tracing 10 Metals:

C (CCSNe, AGB winds), N (AGB winds), O
(CCSNe), Na (CCSNe), Mg (CCSNe), Ca (CCSNe),
Mn (Type la), Fe (CCSNe, Type la), Sr (AGB
winds), & Ba (AGB winds)

+ additional metal tracer fields including

an r-process field

20 total metal fields for each star particle and
gas cell




