

Euclid Early Release Observations – Showcase Galaxies

Jess Howell – University of Edinburgh – on behalf of the Showcase ERO team (**PI Hunt**)

Supervisors: Prof. Annette Ferguson and Dr. Olivia Jones

22nd Nov 2024 – Paraty

jess.howell@ed.ac.uk

jess.howell@ed.ac.uk

6 galaxies were selected:

IC 342 – 3.4 Mpc

Euclid's view of NGC 6822 & IC 10

Euclid's view of IC 10 & NGC 6822

Dwarf Irregulars Both ~0.2-0.3 Z_{\odot}

 $\frac{\text{NGC 6822}}{\text{Stellar Mass: ~1.5 \times 10^8 M}_{\odot}}$ $\text{Log}(M_{200}): 10.5 M_{\odot}$ May be isolated

 $\frac{IC\ 10}{Stellar\ Mass:} \sim 4.4 \times 10^8\ M_\odot$ $Log(M_{200}):\ 10.2\ M_\odot$ Appears to be part of M31 group

- Performed a blind cluster search
- Classified into high, medium and low confidence clusters
- ~25% increase in number of clusters in IC 10 and ~80% increase in NGC 6822 (across all classes)
- Demonstrating high-quality, wide-field imaging is a requirement for thorough cluster studies

High confidence

Medium confidence

Low confidence

Clusters: Improvement from previous studies

Euclid FoV vs previous Hubble pointings of IC 10

Subaru Suprime-Cam R-band vs Euclid VIS band

- Homogeneous photometry across all clusters, in ground-based UBVRI + Euclid VIS YJH (+ completeness testing and synthetic photometry validations)
- In depth analysis including half-light radii estimates and SED fitting providing mass, metallicity, age estimates and extinction

GC populations

 Globular clusters probe galaxy assembly, accreted from smaller dwarfs.

 Studying GCs in nearby dIrrs helps us understand their formation and evolution in MW progenitors.

GC populations

- Our GC sample:
 - High confidence clusters
 - Old (>6 Gyr)
 - + morphology
- 11 in NGC 6822 (2 new) and 9 in IC 10 (1 new).

 (\mathbf{G})

GC populations

- Our GC sample:
 - High confidence clusters
 - Old (>6 Gyr)
 - Morphology
- 11 in NGC 6822 (2 new) and 9 in IC 10 (1 new).
- Occupy positions within the existing scatter of the relations.

A new "extended" globular cluster in 6822

- Extended clusters are characterised by large half-light radii > ~10 pc
- Bringing NGC 6822's total of these objects to 6
- Lowest projected distance (~1.5 kpc, within NGC 6822's main body)

Showcase results: Collaborators

 Euclid has more than doubled the globular cluster numbers and increased their galactocentric distances in NGC 2403

Further analysis in prep (Larsen, S. et al. 2024)

- Confirmed the pre-launch depth expectations
- Lots of diagnostic information available

jess.howell@ed.ac.uk

2024

al.

et

Annibali

Hunt, ,

Summary and Future

- Euclid greatly improved the completeness of cluster studies in local galaxies
- Enabling in depth analysis across young and old clusters in NGC 6822 and IC 10
- Euclid's FoV, depth and image quality will enable unbiased studies of:
 - Stellar populations their properties
 - Cluster systems
 - Low surface brightness satellite galaxies
 - ...All out to further distances than previously possible, opening this up to all galaxies within ~5 Mpc within the Wide Survey footprint (several 100 systems)