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Hierarchical galaxy formation



Hierarchical galaxy formation

This image will be on display in the
ESO Supernova Planetarium & Visitor
Centre in Garching, Munich.

Hierarchical formation of galaxy formation

Smaller galaxies born, enrich
themself, and merge

What if we take just this snapshot:
o galaxy A with their own singular
star formation history merging a
bigger galaxy B resulting in a
much larger galaxy C.

The ‘new’ born galaxy C will contain
both stellar populations and possibly a
new population that will born from the
merger, since the galaxy C will
continue forming stars.


http://supernova.eso.org/
http://supernova.eso.org/

HOW do We Study the A knOWIng C ESO Supernova Planetarium & Visitor

Centre in Garching, Munich.

The importance of studying fossils in
astronomy.
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HOW do We StUdy the A kﬂOWlng C ESO Supernova Planetarium & Visitor

Centre in Garching, Munich.

The importance of studying fossils in
astronomy.

This Pterosaur that was found in
Bavaria (Germany).

(https://education.nationalgeographic.org/resource/fossil/)



http://supernova.eso.org/
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The Fossil

i I This found by Belokurov et al. 2018 and

h) 40.0+/-239.0

Helmi et al. 2018 on the Milky Way Halo using Gaia
v I data.
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NE ﬁ g o GSE was the Milky Way last major merger
= that happened ~8-10 Gyr ago and it had
uF o M ~10"9 Msun (Feuillet et al. 2020 [Mass

357 Metallicity])(~ M of LMC)

. Feltzing & Feuillet 2023
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L, [kpc km s71]

We have many other possible selection. They can use
Energy and Angular momentum of

One of the possible selections is Feuillet et al. 2020.

Feuillet et al. (2020) 30 < +/(J) < 50 (kpckms™1)/2
-500 < L, < 500 kpckms™?




Now that we found this fossil how can we study it?



How do we study the A knowing C

—r 3’ The same way we can study the Pterosaur
fossil by comparing with the “Dinosaurs” the
survived we can study GSE by comparing it
with the Dwarf Galaxies that survived the
interaction with the Milky Way.

To do that we need some tools:

Dwarf Galaxy star formation history
Nucleosynthesis

Chemical evolution

A good data set that covers the
entire metallicity range

e Kinematic data and selection
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Abundances can tell a story

timescale [Gyr]
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Abundances can tell a story — Qualitative SFH
Skuladottir & Salvadori 2020

Some aspects of the SFH:

Slow initial star formation, extended, 1 OScqutor
Natural suppression of the star formation. '
Sculptor: Strong initial star formation, early burst. 0.5
Star formation ceased star formation before S
PP B —
the delayed Eu source. S 00— m—
Ll
. o -0.5
2 Gyr when using the Bettinelli et al.
2019 SFH
4 19550 -5 =0  -05 0.0
= [Fe/H]
S
© X e
C35 ™ Sculptor data from Skuladéttir et al. 2019

Delayed TI me 1
Eu



What if we reverse the Skuladottir & Salvadori 2020 for
the Gaia-Sausage-Enceladus stars?
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SAGA data
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~600 stars with Eu and Fe measurements
between -2.2 < [Fe/H] < -0.5 and Gaia

data.

Feuillet et al. 2020 selection
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Abundances space for our sample
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For the elemental
abundance we took median
values.

Uncertainty as median
absolute deviation (MAD)

The GSE Giant and dwarfs

have the distribution in all
panels

Elemental abundance trends
made with running median
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[Fe/M¢]

Quali. SFR

Sculptor GSE
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When
Quenched?
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Time

[Fe/Mq] ratio shows the balance between the
quick ccSN enrichment (Mg) and the delayed
SN la (Fe).

1. In the metal-poor end ccSN is the main
source of Fe and the source of Mg

2. Steeper slopes means stronger the
contribution of ccSN in their SFH. Which
means fast star formation.

3. GSE stopping at [Fe/H] ~ -0.7 and
[Fe/Mg] below solar can be a sign of
quenching

Note: We can see the contribution of SN la in
GSE, it has rising slope.
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Quali. SFR

Sculptor GSE
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[Ba/Mq] ratio indicates the balance between
the fast/immediate ccSN (Mg) and the
delayed and ‘extended’ AGB (Ba).

1.

2.

The lower is the ratio the strong is the
initial star formation.

The steeper slopes for Sculptor means
that it had a fast star formation that
ceased quickly (no/little Mg over lager
Ba contribution).

GSE having a gentle increase and
starting at [Ba/Mg] ~ -0.5 indicates a
weak initial star formation succeeded by
a moderate and extended star
formation.
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Quali. SFR

Sculptor GSE

2.0 =1.5 =10 -0.5 0.0

! Time
Delayed Eu

[Eu/Mg] ratio express the balance between
immediate source of Mg vs. the sources of
Eu. As seen in Skuladéttir & Salvadori 2020.

1.

A flat trend means that while the galaxy
enrich in Fe some source adds Eu at
same amount as Mg [Not necessarily
the same source]

If it is not flat we may have a second
source of Eu (?), a delayed one that
does not match the immediate
enrichment of Mg.

Therefore GSE shows signs of and
extended star formation beyond the
delay time of the delayed source of Eu.
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Sculptor GSE
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[Eu/Ba] ratio express the balance between
delayed and extended source of Ba vs. the
two sources of Eu, the delayed and the
immediate.

1. When we see a steeply decrease in
Sculptor (the inverse of [Ba/Mq]) it
means that we do not have a secondary
source of Eu contributing to the
abundance pattern.

2.  When this pattern stays high it means
that something is adding Eu while AGB
contribute with Ba, maybe delayed
source of Eu.

3. Decreasing in high metallicities can
mean a that we see the contribution of
AGB, a result of a ‘Natural death’

Note: In GSE we see the SNla effects in [Fe/Mg], the AGB in [Ba/Mg]
but not the AGB effects in [Eu/Bal.



Summary Key aspects of the GSE-SFH as seen

through the elemental abundances

Qualitative SFR

SCUIptor GSE patterns:
A e Slow initial star formation — [Ba/Mg]
Quenched e Extended — [Eu/Ba]
/\ I e Beyond 2 Gyr — [Eu/M@]
o e Quenched — [Fe/Mg] and [Eu/Ba]
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The AESORP fibre positioner for 4AMOST that controls 2448 fibre
spines. Credit: F. Watson.

We need more that to probe the metal-rich part
of GSE.

e Observations

Large surveys. With 4MOST on VISTA we are
able to measure elemental abundances not only
for more stars but also find stars that covers the
whole GSE metallicity range.

In particular S2 - Halo High-resolution
Next steps:
e Galactic Chemical Evolution models

Using Galactic chemical evolution models to
study the star formation history of GSE.

Collaboration with Cescutti - Trieste.

20



estions?




GO'”g baCk tO our FOSSII- SeleCtlon There are several ways to ‘find’ the GSE.

We have tested some selection criteria

e Helmietal. (2018) -1500< L, <150
E,>-18x10°

Feuillet et al. 2021

e Naidu et al. (2020) e>07

~500< L, <500

e Feuillet et al. (2021) 30< /7, <55

Based on the findings in Carrillo et al. (2023), the
most complete selection criteria is the one that
considers cuts in eccentricity (usual e> 0.7 Naidu et
al. 2020) and the most pure is the one using Lz and
\Jr (Feuillet et al. 2021).

For this work the purity is more important so we
decided to take Feuillet et al. (2021) scheme

22
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Future perspectives 4MOST and S2

The AESORP fibre positioner for 4AMOST that controls 2448 fibre

spines. Credit: F. Watson.

- K ..., 3 & =
i W\ L B Baseline Specification
< (@)1 b 9 - 1
L Requirement Baseline Specification
Field-of-View in hexagon 4.1 degree?
Fibre multiplex per pointing 2436
\ ‘ Smallest target separation <17"
“ \ Low-Resolution Spectrographs (LRS)
) ! Fibre multiplex 1624
|
f Spectral resolution R>4000-7800
{
; Wavelength coverage 370-950 nm
High-Resolution Spectrographs (HRS)
Fibre multiplex 812
Spectral resolution R>18,500
392.6-435.5,
Wavelength coverage 516-573 &
610-679 nm
Criterion # Bright survey | Faint survey Deep survey
1 +20° = dec = -80°
Selected areas
2 |b] > 20°
3 [Fe/H] <-0.5
4 120<G=<145 [ 145<G=<155 [ 155<G=<17.0
5 0.15 < (Ggp—Ggp)o = 110
6 (110 < (Ggp—Girp)y < 1.60) & (M; < 3.5)

Total number of targets 1150 000

800 000 26 000

Targets at [Fe/H] <-2.0 | 13 000

18 000 100 23




How do we make elements - burning and explosive
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Credit: Sergio Cristallo

Vp-process

“neutrino-proton process” S-process
) rp-process “slow process” via chain
c .
S “rapid proton process” of stable nuclei through
o via unstable proton-rich nuclei neutron capture
— through proton capture
s Pb (2=82)
@ o
= Proton dripline
g (edge nuclear stability)
-

Sn (Z=50)
r-process
Ni (Z=28)

Fusion up to iron
Big Bang Nucleosynthesis

—»  Number of neutrons

S-process

“rapid process” via
unstable neutron-rich nuclei

r-process
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Nucleosynthesis
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Mrota [Mo] Reference

Dwarf Galaxies - st

Gaia-Sausage-Enceladus

108:85-985 — Feuillet et al. (2020)
LMC
1.5 % 10° 1.382027 x 10° McConnachie (2012)
Erkal et al. (2019)

Fornax

2 x 107 5.6 x 107 McConnachie (2012)
Sculptor

2.3 x 10° 14 x 108 McConnachie (2012)

* .

e

 Fornax - ESO :D‘,SS.?” . - ] soulptor
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Some aspects of the SFH:

Slow initial star formation, extended,
Natural suppression of the star formation.
Sculptor: Strong initial star formation, early burst,
and ceased star formation before the delayed Eu
source.
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4 Gyr in Skuladéttir & Salvadori 2020
2 Gyr when using the Bettinelli et al. 19 SFH
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GSE selections
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Nucleosynthesis - Where it happens

Abundance relative to the Sun

Big Bang Nucleosynthesis
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Understanding r-rich progenitors

The astrophysical site that can synthesize
100 PISN the r-process elements:

3 e CCSN and which energy?

= 10 e Magnetorotational driven SN?
5 e Jet-driven SN?

g e NSM?

% e BHNSM?

FAINT SN
10 100 140 260
Stellar mass [Mo]
Vanni et al. 2023 30




Understanding r-rich progenitors

The astrophysical site that can synthesize
the r-process elements:

CCSN and which energy?
Magnetorotational driven SN?
Jet-driven SN?

NSM?

BHNSM?

Figure 1. 3D entropy contours spanning the coordinates planes with magnetic
field lines (white lines) of the MHD-CCSN simulation ~31 ms after bounce.
The 3D domain size is 700 x 700 x 1400 km.

Winteler et al. 2012 31



Understanding r-rich progenitors

The astrophysical site that can synthesize
the r-process elements:

CCSN and which energy?
Magnetorotational driven SN?
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Obergaulinger & Reichert et al. 2023 32



Understanding r-rich progenitors
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Domoto et al. 2022
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20000
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The astrophysical site that can synthesize
the r-process elements:

CCSN and which energy?
Magnetorotational driven SN?
Jet-driven SN?

NSM?

BHNSM?
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Understanding r-rich progenitors

Evolution Paths of [stable Ns |
NS+NS/BH W'/?

e

HMNS _
NS+NS different. rot. ’Isf“E
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s
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Mass Loss Phases During NS—NS and NS—-BH Merging

Merger Phase: Prompt/dynamical ejecta
(due to dynamic binary interaction)

Mm\ xs |ns A7 ¥ ¥yyn Ns | BH
- — -
t<5-10ms M, ~ 10-3-10-'M t<fewm
afte: o ° after first
first contact §~ 1-10ky/nuc mass transfer

BH-Torus Phase: Disk ejecta
(due to v heating, viscosity/magn. fields, recombination)

Mo~ 1073-10"1 M,
§~10-50 ky/nuc

Just et al. 2015

The astrophysical site that can synthesize
the r-process elements:

CCSN and which energy?
Magnetorotational driven SN?
Jet-driven SN?

NSM?

BHNSM?
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