

Realising the potential of large spectroscopic surveys with machine-learning

Guillaume Guiglion (GG)

with S. Nepal, C. Chiappini, M. Ambrosch, M. Steinmetz, M. Valentini, G. Matijevič and R. de Jong

IAUS395 - Paraty - 21/11/24

MPIA

Paraty

MPIA

Paraty

Sorry no results were found for author:("^barbuy, beatriz") abs:(machine-learning)

Stellar abundances for Galactic Archaeology

Stellar abundances for Galactic Archaeology

Stellar abundances for Galactic Archaeology

The need for large spectroscopic surveys

>104

106

>5x10⁵

5x10⁵

The need for large spectroscopic surveys

105

>104

>10⁶

>106

10

106

🧒 G A L A H

10⁶

10⁶

 \rightarrow One can use standard spectroscopy

e.g.:

- **SME** (Valenti & Piskunov;
- FERRE (Allende-Prieto et al. 2006; @PRISTINE)
- MATISSE (Recio-blanco et al. 2006;
- GAUGUIN (GG et al. 2016, 2018;

@GALAH) @PRISTINE) @RAVE, @*Gaia*-RVS) @GES, @RAVE)

→ One can use standard spectroscopy e.g.:

- SME (Valenti & Piskunov; @GALAH)
- FERRE (Allende-Prieto et al. 2006; @PRISTINE)
- MATISSE (Recio-blanco et al. 2006;
- GAUGUIN (GG et al. 2016, 2018; @GES, @RAVE)

@GALAH) @PRISTINE) @RAVE, @Gaia-RVS) @GES, @RAVE)

\rightarrow One can use machine-learning

e.g.:

- Cannon
- Payne

(Ness et al. 2015; @RAVE, @GALAH) (Ting et al. 2019; @LAMOST, @APOGEE)

→ One can use standard spectroscopy e.g.:

- **SME** (Valenti & Piskunov;
- FERRE (Allende-Prieto et al. 2006; @PRISTINE)
- MATISSE (Recio-blanco et al. 2006;
- GAUGUIN (GG et al. 2016, 2018;

@GALAH) 006; @PRISTINE) 06; @RAVE, @*Gaia*-RVS) @GES, @RAVE)

\rightarrow One can use machine-learning

e.g.:

- Cannon
- Payne

(Ting et al. 2

(Ness et al. 2015; @RAVE, @GALAH) (Ting et al. 2019; @LAMOST, @APOGEE)

- Convolutional Neural-Networks
 - \rightarrow Leung & Bovy 2019
 - \rightarrow Bialek et al. 2019

(@APOGEE) (@GES UVES)

→ One can use standard spectroscopy

- e.g.:
 - SME (Valenti & Piskunov;
 - FERRE (Allende-Prieto et al. 2006; @PRISTINE)
 - MATISSE (Recio-blanco et al. 2006;
 - GAUGUIN (GG et al. 2016, 2018;

\rightarrow One can use machine-learning

e.g.:

- Cannon
- Payne
- Convolutional Neural-Networks
 - → Leung & Bovy 2019
 - \rightarrow Bialek et al. 2019
 - \rightarrow GG et al. 2020
 - \rightarrow Ambrosch, GG et al. 2023
 - \rightarrow Nepal, GG et al. 2023
 - \rightarrow GG et al. 2024

(@APOGEE) (@GES UVES) (@RAVE) (@GES HR10&21) (@GES HR15) (@Gaia RVS)

@GALAH)

@RAVE, @Gaia-RVS)

@GES, @RAVE)

(Ness et al. 2015; @RAVE, @GALAH) (Ting et al. 2019; @LAMOST, @APOGEE)

→ One can use standard spectroscopy e.g.:

- SME (Valenti & Piskunov;
- FERRE (Allende-Prieto et al. 2006; @PRISTINE)
- MATISSE (Recio-blanco et al. 2006;
- GAUGUIN (GG et al. 2016, 2018;

\rightarrow One can use machine-learning

e.g.:

- Cannon
- Payne

- Convolutional Neural-Networks

- → Leung & Bovy 2019
- \rightarrow Bialek et al. 2019
- \rightarrow GG et al. 2020
- \rightarrow Ambrosch, GG et al. 2023
- \rightarrow Nepal, GG et al. 2023
- \rightarrow GG et al. 2024

(@APOGEE) (@GES UVES) (@RAVE) (@GES HR10&21) (@GES HR15) (@Gaia RVS)

@GALAH)

@RAVE, @Gaia-RVS)

@GES, @RAVE)

(Ness et al. 2015; @RAVE, @GALAH) (Ting et al. 2019; @LAMOST, @APOGEE)

E.g. measuring T_{eff}, log(g), [Fe/H] in:

E.g. measuring T_{eff} , log(g), [Fe/H] in:

E.g. measuring T_{eff}, log(g), [Fe/H] in:

Data driven:

Leung & Bovy 2019 Zhang et al. 2019 Guiglion et al. 2020

E.g. measuring T_{eff}, log(g), [Fe/H] in:

E.g. measuring T_{eff} , log(g), [Fe/H] in:

E.g. measuring T_{eff} , log(g), [Fe/H] in:

How is CNN learning?

CNN for Gaia-ESO

A&A 671, A61 (2023) https://doi.org/10.1051/0004-6361/202244765 © The Authors 2023

The Gaia-ESO Survey: Preparing the ground for 4MOST and WEAVE galactic surveys

Chemical evolution of lithium with machine learning*,**,***

S. Nepal^{1,2}, G. Guiglion^{3,1}, R. S. de Jong¹, M. Valentini¹, C. Chiappini¹, M. Steinmetz¹, M. Ambrosch⁴, E. Pancino⁵, R. D. Jeffries⁶, T. Bensby⁷, D. Romano⁸, R. Smiljanic⁹, M. L. L. Dantas⁹, G. Gilmore¹⁰, S. Randich⁵, A. Bayo¹¹, M. Bergemann^{12,3}, E. Franciosini⁵, F. Jiménez-Esteban¹³, P. Jofré¹⁴, L. Morbidelli⁵, G. G. Sacco⁵, G. Tautvaišienė⁴, and S. Zaggia¹⁵

Astronomy

Astrophysics

Nepal et al. 2023

gaia RVS + CNN

Gaia DR3 June 2022: 10⁶ RVS spectra, R~11500 (Katz et al. 2022)

David Katz

Motivations

Motivations

Motivations

No GSP-Spec labels with 13 "good" flags within 15<S/N<25 \rightarrow Leverage the low-S/N RVS sample

gaia

A&A, 682, A9 (2024) https://doi.org/10.1051/0004-6361/202347122 © The Authors 2024

Beyond Gaia DR3: Tracing the [α/M] – [M/H] bimodality from the inner to the outer Milky Way disc with Gaia-RVS and convolutional neural networks*

G. Guiglion^{1,2,3}, S. Nepal^{3,4}, C. Chiappini³, S. Khoperskov³, G. Traven⁵, A. B. A. Queiroz³,
M. Steinmetz³, M. Valentini³, Y. Fournier³, A. Vallenari⁶, K. Youakim⁷, M. Bergemann²,
S. Mészáros^{8,9}, S. Lucatello^{10,11}, R. Sordo⁶, S. Fabbro¹², I. Minchev³, G. Tautvaišienė¹³, Š. Mikolaitis¹³, and J. Montalbán¹⁴

A hybrid Convolutional Neural-Network for Gaia-RVS analysis

A hybrid Convolutional Neural-Network for Gaia-RVS analysis

A hybrid Convolutional Neural-Network for Gaia-RVS analysis

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

Take-home messages

- Standard and ML spectroscopic methods complement each other !

Take-home messages

- Standard and ML spectroscopic methods complement each other !

- CNN performs extremely well for abundance measurements (RAVE, *Gaia*-ESO, *Gaia*-RVS)

Take-home messages

- Standard and ML spectroscopic methods complement each other !

- CNN performs extremely well for abundance measurements (RAVE, *Gaia*-ESO, *Gaia*-RVS)

- CNN in the context of the future large datasets !

BONUS SLIDES

Why using CNN on low-res spectra?

4MIDABLE-LR ESO proposal 2020

Developing CNN for 4MOST

Developing CNN for 4MOST

Spectrum

Current test: T_{eff}, log(g), [Fe/H], Li, C, N, O, Na, Mg, Al, Si, Ca, V, Ti, Cr, Mn, Co, Ni, Sr, Y, Zr, Ba, Ce, Eu (24 labels)

 \rightarrow 1 night parametrized in <5 minutes

5000

- \rightarrow Currently applying CNN to GALAH (GG) and SDSS (S. Nepal) data.
- \rightarrow Standard spectroscopy:

4000

 \rightarrow Working towards full 3D-NLTE abundances computation

6000

7000

 $\lambda(A)$

8000

9000

 \rightarrow t-SNE classification of RVS spectra (adapted from Ambrosch, GG et al. 2023)

Training + Observed (886080 stars)

GG et al. 2024b

 \rightarrow t-SNE classification of RVS spectra (adapted from Ambrosch, GG et al. 2023)

GG et al. 2024b

 \rightarrow t-SNE classification of RVS spectra (adapted from Ambrosch, GG et al. 2023)

Train-like Obs (669572 stars)

GG et al. 2024b

Observed (841300 stars)

Training (44780 stars)

 \rightarrow t-SNE classification of RVS spectra (adapted from Ambrosch, GG et al. 2023)

Training + Observed (886080 stars)

GG et al. 2024b

Train-unlike Obs (171728 stars)

Are we sure that CNN is not measuring abundance correlations ?

- → [Al/Fe] and [Mg/Fe] ratios are anti-correlated in Globular Clusters (e.g. Pancino et al. 2017)
- → Training set: 14637 stars with Gaia-ESO spectra. Labels: T_{eff}, log(g), [Fe/H], [AI/Fe], [Mg/Fe]

 \rightarrow We know how to properly use CNNs for abundance measurements

Robustness of CNN with noise

CNN performances for halo stars \rightarrow 15<S/N<25

- \rightarrow CNN provides precise and accurate labels down to [M/H]=-2.4 dex
- \rightarrow More external validation with GALAH, OCs, and GSP-Phot

