M giants with IGRINS: Detailed exploration of the M giants near infrared spectra to chemically characterise the inner Milky Way

Govind Nandakumar

N. Ryde, G. Mace, M. Schultheis, R. M. Rich, L. Casagrande, B. Thorsbro

IAU Symposium 395 19 November 2024

Inner Milky Way

Mean A_K extinction map in the inner Milky Way, calculated from Gonzalez et al. (2012) using extinction coefficients from Nishiyama et al. (2009)

Inner Milky Way

Mean A_K extinction map in the inner Milky Way, calculated from Gonzalez et al. (2012) using extinction coefficients from Nishiyama et al. (2009)

Inner Milky Way

Mean A_K extinction map in the inner Milky Way, calculated from Gonzalez et al. (2012) using extinction coefficients from Nishiyama et al. (2009)

Challenges

Challenges

• Develop method to determine stellar parameters of M giant stars from near-IR spectra

- Develop method to determine stellar parameters of M giant stars from near-IR spectra
- Build a catalog of solar neighborhood M giants observed in near-IR, i.e., benchmark/reference sample (like Gaia benchmark)

- Develop method to determine stellar parameters of M giant stars from near-IR spectra
- Build a catalog of solar neighborhood M giants observed in near-IR, i.e., benchmark/reference sample (like Gaia benchmark)
- Identify lines in near-IR wavelength regime with reliable atomic information or astrophysical line strength estimates (Sun, Arcturus).

- Develop method to determine stellar parameters of M giant stars from near-IR spectra
- Build a catalog of solar neighborhood M giants observed in near-IR, i.e., benchmark/reference sample (like Gaia benchmark)
- Identify lines in near-IR wavelength regime with reliable atomic information or astrophysical line strength estimates (Sun, Arcturus).
- Compare and validate abundance trends with those from optical studies of warmer giants (e.g. GILD; Jönsson et al. 2017, in prep)

- Develop method to determine stellar parameters of M giant stars from near-IR spectra
- Build a catalog of solar neighborhood M giants observed in near-IR, i.e., benchmark/reference sample (like Gaia benchmark)
- Identify lines in near-IR wavelength regime with reliable atomic information or astrophysical line strength estimates (Sun, Arcturus).
- Compare and validate abundance trends with those from optical studies of warmer giants (e.g. GILD; Jönsson et al. 2017, in prep)
- Consistent and systematic analysis of inner Milky Way stars : observe with the same instrument, and analyse with same method and spectral lines.

Instrument

- Immersion Grating Infrared Spectrograph (IGRINS; Park et al. 2004)
 R~ 45,000
 - $\lambda \sim$ full H and K bands (14500 24600 Å)

IGRINS on the 107" at McDonald Observatory (Harlan J. Smith Telescope)

- Reduction using IGRINS PipeLine Package (Lee et al. 2017)
- Analysis with SME (Valenti & Piskunov 2012, 1996) and MARCS models (Gustafsson et al. 2008)
- NLTE grids for Fe,C, N, O, Na, Mg, Al, Si, K, Ca, Mn, Ba (Amarsi et al. 2020)

Existing methods for Teff determination

- Interferometry (Mozurkevich et al. 2003)
- Infrared flux method (IRFM; Casagrande et al. 2008)
- Color-T*eff* relations (Bessel et al. 1998)

Existing methods for Teff determination

- Interferometry (Mozurkevich et al. 2003)
- Infrared flux method (IRFM; Casagrande et al. 2008)
- Color-T*eff* relations (Bessel et al. 1998)

Only for nearby stars and limited by reddening

Existing methods for Teff determination

- Interferometry (Mozurkevich et al. 2003)
- Infrared flux method (IRFM; Casagrande et al. 2008)
- Color-T*eff* relations (Bessel et al. 1998)

Only for nearby stars and limited by reddening

Need a method to determine Teff directly from spectra:

- Line depth ratios between high and low excitation energy lines (Afsar et al. 2023)- Affected by metallicities
- CO bandhead in low resolution spectra Not precise enough
- Sc line in the K-band (Thorsbro et al. 2020) Promising
- APOGEE-type full spectral fitting Not validated for cool stars

• T*eff* sensitive **OH lines**

• T*eff* sensitive **OH lines**

• T*eff* sensitive **OH lines**

16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250

• Degeneracy between O abundance and T*eff* \longrightarrow fix O

• T*eff* sensitive **OH lines**

- Degeneracy between O abundance and T*eff* \Box fix O
- 3D NLTE O trend for thin, thick and halo stars from Amarsi et al. (2019)

• T*eff* sensitive **OH lines**

- Degeneracy between O abundance and T*eff* \Box fix O
- 3D NLTE O trend for thin, thick and halo stars from Amarsi et al. (2019)

• T*eff* sensitive **OH lines**

- Degeneracy between O abundance and T*eff* \Box fix O
- 3D NLTE O trend for thin, thick and halo stars from Amarsi et al. (2019)

Teff = 3500 K logg = 0.65 dex [Fe/H] = 0.0 dex χ_{mic} = 1.87 km/s [O/Fe] from Amarsi thin/thick disc

 Sample: 6 nearby M giants with angular diameter Teff (spectral library) 44 solar neighbourhood M giants (poor weather proposal)

 Sample: 6 nearby M giants with angular diameter Teff (spectral library) 44 solar neighbourhood M giants (poor weather proposal)

 Sample: 6 nearby M giants with angular diameter Teff (spectral library) 44 solar neighbourhood M giants (poor weather proposal)

Impact of iscochrone choice

Impact of iscochrone choice

Goals

- Develop method to determine stellar parameters of M giant stars from near-IR spectra
- Build a catalog of solar neighborhood M giants observed in near-IR, i.e., benchmark/reference sample (like Gaia benchmark (Heiter et al. 2015))

 Identify lines in near-IR wavelength regime with reliable atomic information or astrophysical line strength estimates (Sun, Arcturus).
P (Nandakumar et al. 2022) Yb (Montelius et al. 2022) F (Nandakumar et al. 2023b) Ba (Nandakumar et al. 2024c)

 Compare and validate abundance trends with those from optical studies of warmer giants (e.g. GILD; Jönsson et al. 2017, in prep)

• Consistent and systematic analysis of inner Milky Way stars : observe with the same instrument, and analyse with same method and spectral lines.

Other elements **Observed** spectra Synthetic spectra Telluric spectra Alpha elements No element CN 1-2 CO 7-4 Mg I Mg I Mg | CN | Fe – Si I Fel Μg Mg S S Ca l Si l 1.0 Si Star 6 Mg Star 2 [X/Fe]: 0.03 Mg Star 2 Si Star 6 Mg Star 2 0.5 [X/Fe]: 0.06 $[X/Fe] \pm 0.2$ [X/Fe]: 0.09 [X/Fe]: 0.15 [X/Fe]: 0.04 21061 21459 20803 1-7 0 NJ CN CN 21060 21061 21059 21060 21062 21457 21458 21460 16433 16434 16435 16436 20804 21059 21058 20805 20806 CO Sil S I Fe I Fe I S I S ī S CN Ъ Sil 1.0 Si Star 6 Si Star 6 S Star 20 S Star 20 Ca Star 21 0.5 [X/Fe]: -0.0 [X/Fe]: -0.0 15479 15480 [X/Fe]: 0.18 [X/Fe]: 0.21 [X/Fe]: -0.02 20927 م ا 20890 20892 20926 20928 15477 15478 22508 22509 16149 16150 16151 16152 20889 20891 20925 22506 22507 Ca l Ca l Fe Ca | Cal Fe E I S S S S Ca Ē ΟC Sil S S Ca 1.0 Ca Star 21 0.5 [X/Fe]: 0.12 [X/Fe]: -0.02 [X/Fe]: 0.11 [X/Fe]: 0.11 [X/Fe]: 0.15 21114 16154 16155 16156 16157 16156 16157 16159 20961 20962 20963 20971 20972 20973 20974 21112 21113 21115 16158 20964 Ca – Ca – Si - Ca -Si | Ca | an CC aa CC Ï രൗ S S S പ്പ പ്പം 1.0 Ca Star 2<mark>1</mark> Ca Star 21 Ca Star 21 Ca Star 21 0.5 Star 21 [X/Fe]: 0.08 [X/Fe]: 0.03 [X/Fe]: 0.04 [X/Fe]: 0.08 [X/Fe]: -0.06 22627 22628 22607 22608 22609 22623 22624 22625 22626 22625 22626 22650 22651 22652 22653 22652 22653 22654 22606 22655

Wavelength [Å]

Nandakumar et al. (2024b)

Normalised flux

Nandakumar et al. (2024b)

Other elements

- Observed spectra
- Synthetic spectra
- Telluric spectra

No element

Nandakumar et al. (2024b)

Other elements

- Observed spectra
- Synthetic spectra
- Telluric spectra
 - No element

neutron-capture elements

Nandakumar et al. (2024b)

Goals

- Develop method to determine stellar parameters of M giant stars from near-IR spectra
- Build a catalog of solar neighborhood M giants observed in near-IR, i.e., benchmark/reference sample (like Gaia benchmark (Heiter et al. 2015))
- Identify lines in near-IR wavelength regime with reliable atomic information or astrophysical line strength estimates (Sun, Arcturus).
- Compare and validate abundance trends with those from optical studies of warmer giants (e.g. GILD; Jönsson et al. 2017, in prep)
- Consistent and systematic analysis of inner Milky Way stars : observe with the same instrument, and analyse with same method and spectral lines.

Abundance trends: 21 elements

Montelius et al. (2022)

GILD

Nandakumar et al. (2024b)

F Na Mg F Mg Na 0.5 0.0 H--0.5Si S S Al Ał 0.5 0.0 H +-0.5K K Ca Sc Ca Sc 0.5 0.0 -0.5Ti V Cr CrTi 0.5 VHc -0.5 Ni Mn Mn Co Co Ni 0.5 0.0 -0.5Zn Zŋ Y Cu Cu 0.5 0.0 H -0.5 1.0 Ce Nd Nd Yb 0.5 0.0 -0.5 0.5 -0.5 0.0 0.5 0.5 -1.0-0.50.0 -1.0-1.0-0.50.0 [Fe/H]

Asymptotic Giant Branch Stars Core-collapse Supernovae Type la Supernovae Neutron Star Mergers

Kobayashi (2020)

Abundance trends: 21 elements

Nandakumar et al. (2024b)

Montelius et al. (2022) **IGRINS** thin-disk **IGRINS** thick-disk F Na Mg Mg 0.5 0.0 -0.5Si S \mathbf{A} 0.5 0.0 -0.5 -Sc K K Ca Ca Sc 0.5 0.0 H -0.5 Cr Ti V CrTi 0.5 0.0 -0.5 Ni Co Mn Mn Co Ni 0.5 0.0 -0.5Zn Cu Y Cu 0.5 0.0 -0.51.0 Yh Nd Ce 0.5 0.0 -0.5 -1.00.0 0.5 -1.0-0.50.0 0.5 -0.5-0.5-1.00.0 0.5 [Fe/H]

Asymptotic Giant Branch Stars Core-collapse Supernovae Type Ia Supernovae Neutron Star Mergers

Kobayashi (2020)

Abundance trends: 21 elements

0.5

[Fe/H]

 \mathbf{Sc}

Goals-Summary

- Develop method to determine stellar parameters of M giant stars from near-IR spectra
- Build a catalog of solar neighborhood M giants observed in near-IR, i.e., benchmark/reference sample (like Gaia benchmark (Heiter et al. 2015))
- Identify lines in near-IR wavelength regime with reliable atomic information or astrophysical line strength estimates (Sun, Arcturus).
- Compare and validate abundance trends with those from optical studies of warmer giants (e.g. GILD; Jönsson et al. 2017, in prep)

 Consistent and systematic analysis of inner Milky Way stars : observe with the same instrument, and analyse with same method and spectral lines.

46

Thank you!

Challenges

 Origin and/or formation sites under debate (Womack et al. (2023), Bijavara-sheshashayana et al. (2024)) rapidly rotating massive stars From ¹⁴N via proton and α capture thermal pulses in asymptotic giant branch stars ¹⁴N(n,p)¹⁴C(α,γ)¹⁸O(p,α)¹⁵N(α,γ)¹⁹F neutrino-process in core collapse supernovae novae ¹⁷O(p,γ)¹⁸F(p,γ)¹⁹Ne(β⁺)F

• No strong atomic fluorine lines in optical or infrared wavelength regimes, only molecular HF lines in near-IR

- Most commonly used line : 23358 Å $\,$

Nandakumar et al. (2023b)

Nandakumar et al. (2023b)

Nandakumar et al. (2023b)

- $\Delta \xi_{\text{micro}}$: +0.2 km/s
- $\Delta \xi_{\text{micro}}$: -0.2 km/s

Nandakumar et al. (2023b)

Why study the inner Milky Way

• Unique with an early star formation and chemical enrichment history owing to the inside out formation of the Milky Way.

• Strong magnetic field, dense gas and high turbulence compared to those in the solar neighbourhood (SN).

• Ideal proxy for understanding initial stages of typical spiral galaxy formation and evolution.

• Stellar parameters determined following thick disk [O/Fe] trend

□ Stellar parameters determined following thin disk [O/Fe] trend

Stellar parameters

- Effective temperature (Teff), surface gravity (logg), metallicity ([Fe/H]) and microturbulence (xmicro).
- Determination of Teff in M giants :
 - Interferometry (Mozurkewich et al. 2003)
 - Color Teff relation (Bessel et al. 1998)
 - Infrared flux method (IRFM)(Blackwell & Shallis 1977,Casagrande et al. 2008)

Uncertainties in reddening estimates

- CO band heads in low-resolution K-band spectra (Schultheis et al. 2016, Nandakumar et al. 2018)
- K band Scandium lines (Thorsbro et al. 2020)

More

tests

Bright stars

Further validation: open clusters

Bijavara-Sheshayana et al. (2024)

Manganese

63

Why study the inner Milky Way?

- Unexplored structures and stellar populations (ability to resolve individual stars)
- Unique with an early star formation and chemical enrichment history owing to the inside out formation of the Milky Way.

- Strong magnetic field, dense gas and high turbulence compared to those in the solar neighbourhood (SN).
- Ideal proxy for understanding initial stages of typical spiral galaxy formation and evolution.

Future works

- Analysis of low resolution NIR spectra of nearby M giants (TANSPEC, KMOS etc).
 - Knowledge from high resolution spectroscopic analysis in developing parameter determination methods for low resolution NIR spectra.
 - Machine learning tools to extract information from low resolution spectra
- Near-IR spectroscopic analysis of inner Milky Way clusters (e.g. Lille 1)
- Decipher the connection between gas, stars and dust in the inner Milky Way using multi wavelength data (radio, sub-mm, mid & far IR)
- Models/simulations (chemical evolution, kinematic, cosmological) to decipher the formation and evolution scenarios of inner Milky Way structures
- Future surveys and observing facilities
 - MOONS near-infrared survey in H-band, lower resolution (than IGRINS).
 - Thirty Meter Telescope IRIS,MODHIS etc
 - India's 10-m class national large optical-IR telescope (NLOT)

Barium

Phosphorus

Galactic archaeology: observational perspective

Milky Way components

69

Abundance trends

Accreted stellar population

Nissen & Schuster 2010, Matsuno et al. (2024)

Chemical enrichment

Buder et al (2022)

71

Abundance trends: SFR & IMF

Observations : Shetrone et al. (2001)

Bulge observations

Filled triangles:Alves-Brito et al. (2010) Plus signs: infrared results from Rich & Origlia (2005) Filled hexagons: infrared results by Ryde et al. (2009) Stars: results for microlensed dwarf stars by Bensby et al. (2010)

Cescutti & Matteucci 2011 72
Abundance trends

Milky Way components

Si lines investigation

Test: Nearby M giants

• Identified 6 nearby M giants with IGRINS spectra available in IGRINS

Test: Nearby M giants

Yaxis : Literature - Our method

● Teff-(V-K)0 relation of Bessel et al. 1998

$$T_{\rm eff} = 9102.523 - 3030.654(V - K)_0 + 633.3732(V - K)_0^2$$
$$- 60.73879(V - K)_0^3 + 2.135847(V - K)_0^4$$

Catalog: Solar neighbourhood M giants

• **44 solar neighbourhood M giants** (selected from APOGEE) from our poor weather proposal with IGRINS

Teff comparison

 \bigcirc Bessel et al (1998) Teff-(V-K)₀ with reddening from APOGEE

Y axis : Literature - Our method

79

APOGEE comparison

Y axis : Literature - Our method

Nandakumar et al. (2023a)

BP1: orbital analysis

Different assumption

Nandakumar et al. (2023a)

BP1: thin-disc [O/Fe]

Stellar parameters determined following thick disk [O/Fe] trend
Stellar parameters determined following thin disk [O/Fe] trend

Chemical enrichment

Inner Galactic bulge (IGB)

• Chemistry of inner Galactic Bulge and its connection to the outer Bulge and/or other Milky Way components??

NSC: preliminary results

Abundance trends: 21 elements

0.5

[Fe/H]

 \mathbf{Sc}