

Chronology of our Galaxy from Gaia CMD-fitting:

Spatially resolved star formation histories of the Milky Way thin and thick disk and halo

Carme Gallart (IAC, Spain) & ChronoGal core team:

Emma Fernández-Alvar, Anna B. Queiroz, Santi Cassisi, Tomás Ruiz-Lara, Francisco Surot, Guillem Aznar-Menargues, Yllari González-Koda, David Mirabal, Alicia Rivero

IAC/ULL, Spain - INAF, Italy - U. Granada, Spain

ENORMOUS PROGRESS IN GALACTIC ARCHAEOLOGY: GAIA DR2 + SPECTROSCOPIC SURVEYS

UNSOLVED QUESTIONS ABOUT THE FORMATION AND EVOLUTION OF THE MILKY WAY DISK & HALO

The current greatest challenge for further progress is the difficulty to determine precise stellar ages for unbiased & large samples of stars.

Ages are essential to stablish a temporal sequence of events

Many efforts, e.g. Miglio+2021; Sahlholdt+2021; Xiang & Rix 2022, Queiroz+2023, Pinsonneault+2024 **When** did the dominant stellar disk of the Milky Way emerge?

- Is there an early, very metal poor thin disk?
- What is the age-metallicity distribution across the disk (in Z and R)?
- On the origin of MW disk high/low α populations:

-**How long** did the high- α phase last?

-Did the high- and low- α phases **overlap in time**?

What is the role of mergers (particularly Gaia-Enceladus) in the MW disk formation and evolution?

OUR APPROACH: STAR FORMATION HISTORIES FROM CMD-FITTING

OUR APPROACH: STAR FORMATION HISTORIES FROM CMD-FITTING

★ CMDft.Gaia produces deSFH that are:

→ robust (against sensible changes in input parameters, e.g. binaries, SSPs 'size', stellar models, size of mother, weights, reddening map...)
 → precise (better than 5-10%, depending on age)
 → accurate (ages systematically overestimated by a maximum of 6%)

★ Accuracy and precisión of the derived MDF

Comparison of the derived MDF with Fuhrman's spectroscopic MDF:

Almost perfect match

Note that no assumptions have been made regarding metallicity in the CMD-fitting process

★ Accuracy and precisión of the derived MDF

Comparison of the derived MDF with Fuhrman's spectroscopic MDF:

Almost perfect match

Note that no assumptions have been made regarding metallicity in the CMD-fitting process

-The difference with age-metallicity distributions derived star-by-star is due to the **increased precision** in age and [M/H] with CMD-fitting

-An important difference, not visually apparent, is that we provide the actual number of stars in the different events of star formation//mass involved

-We don't derive individual stellar ages.

deSFHs OF THE KINEMATICALLY DEFINED THICK AND THIN DISKS

See Poster #19 by Emma Fernández-Alvar

Within cylinder centered in the Sun, radius = 250 pc, height = +/- 500 pc

 $[M/H] = [Fe/H] + log(0.694 \times 10^{[\alpha/Fe]}+0.301)$ (Salaris + 1993; Pietrinferni + 2021)

Thin disc SFH

[H/M]

Age [Gyr]

Renaud+2020 Vintergatan simulation stars from the

ROLE OF G-E MERGER IN THE MW DISK FORMATION AND EVOLUTION?

Gaia DR3 data

Larger cylinder centered in the Sun, radius = 1 kpc, height = +/- 3500 pc

deSFH of a kinematically defined halo $V_T = 4.74/\varpi \sqrt{\mu_{lpha*}^2 + \mu_{\delta}^2} > 200 \text{ km s}^{-1}$ As in Gallart+2019 0.0 - 800000 **Observed CMD** Solution CMD red sequence- Splash 0 ¹dex -0.5 - 600000 0.0 1 SFR [M_oGy blue sequence- Gaia-Enceladus -0.5 [W/H] [dex] -1.02 400000 M_G Blue seq. 3 -1.5CMD blue seq- GE 200000 -1.5CMD red seq-splash -2.0 -2.05 | 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 12 10 8 4 2 $G_{\rm BP} - G_{\rm RP}$ $G_{\rm BP} - G_{\rm RP}$ Age [Gyr]

ROLE OF G-E MERGER IN THE MW DISK FORMATION AND EVOLUTION?

First SFH of 6D selected Gaia-Enceladus within 1.2 kpc

deSFH of a kinematically defined halo

ROLE OF G-E MERGER IN THE MW DISK FORMATION AND EVOLUTION?

Kinematic halo SFH Thick disc SFH

Accretion of GES

What is the role of mergers (particularly Gaia-Enceladus) in the MW disk formation and evolution?

Gallart et al. 2019, NatAs

The merger of G-E seems to have triggered an episode of enhaced star formation that created the bulk of the thick disk mass

WHEN AND HOW DID THE MILKY WAY DISK FORM? HOW DID IT EVOLVE

-1.3

-2.0

12

10

Age [Gyr]

When did the dominant stellar disk of the Milky Way emerge?
Very early, >12 Gyr ago-

-What was special about the high- lpha phase? How long did it last?

A strong star formation burst induced by the first pericenters of GES after an initial quiescent phase. By 10 Gyr ago the high- α phase was over.

-Did the high- and low- α phases overlap in time? Very slightly

* What is the role of mergers (particularly **Gaia-Enceladus**) in the MW disk formation and evolution? Gaia-Enceladus induced the first intense burst of star formation in the MW disk; soon after, the disk became α -poor; other mergers (Sagittarius?) induced later star formation?

What is the age-metallicity distribution across the disk (in Z and R)?

deSFH as a function of |Z| across a cylinder of |Z|<3.5 kpc and R_{sun}<1 Kpc

The current greatest challenge to interpret this wealth of information is the difficulty to determine precise stellar ages for unbiased & large samples of stars.

Ages are essential to stablish a temporal sequence of events, and to correctly interpret the measured properties in the context of galaxy evolution models.

e.g. Miglio+ 2017: "Plato as it is: a legacy mission for Galactic archaelogy": need ages with 10% precision Our approach to derive SFH: CMD-fitting of Gaia data

Chronology of our Galaxy from Gaia CMD-fitting:

On the formation of the Milky Way thin and thick disks

Carme Gallart (IAC, Spain)

ChronoGal core team:

Santi Cassisi, Emma Fernández-Alvar, Tomás Ruiz-Lara, Francisco Surot, Guillem Aznar-Menargues, Yllari González-Koda, David Mirabal, Anna B. Queiroz, Alicia Rivero, Judith Santos

IAC/ULL, Spain - INAF, Italy - U. Granada, Spain

