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Pioneering work by Beatriz Barbuy in 
1987
using the Lick 3.1m and the Robinson-Wampler image-dissector 
scanner



The need for automation

 Make the spectroscopic analysis 
reproducible

 Make it optimal
 Make it faster
 Cope with the data 

acquisition rate



Scale of surveys



Machine Learning

 In fashion!
 Can be used (e.g. CNNs) to interpolate models
● Can be used to determine parameters by training on 

models
 Singular stars may not be properly identified by 

networks trained with limited data which do not 
include them

 Networks can learn from built-in relationships in the 
training sample



Data-driven methods

 Ultimately we need quantities we cannot 
measure directly: Teff, logg, [C/Fe], etc.  so 
models are strictly necessary to assign tags 
to stars in the first place

 Data-driven applications, in many cases, are 
in fact model-driven, but without control of 
the quality/components of the models



Analysis of stellar spectra
 Reduce the data (e.g. using MIDAS)
 [measure equivalent widths]
 Determine atmospheric parameters

get a model atmosphere

compute a synthetic spectrum, compare with data

iterate
 Determine chemical abundances

compute a synthetic spectrum, compare with data



Equivalent widths vs. spectral 
synthesis

 EWs condense the information about a line in one 
number 

 Independent of broadening such as rotation, macro-
turbulence, instrumental profile

 Loss of information
 Cause blindness
 Errors tend to go  

in one direction



Model atmospheres

 Kurucz, MARCS, Phoenix, Tlusty, Fastwind, …
 For cool stars Kurucz, MARCS and Phoenix are the 

most heavily used ones, but MARCS and Phoenix 
codebase are not public

 Models can be taken from existing grids
 They can be interpolated from those grids
 They can be computed afresh with open source 

codes (Kurucz, Tlusty) Puls, 
Herrero 
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Existing grids

Kurucz: old, odfnew, Mészáros (APOGEE)

https://kurucz.harvard.edu

https://research.iac.es/proyecto/ATLAS-APOGEE/

https://data.sdss.org/sas/dr17/apogee/spectro/speclib/atmos/kurucz/

MARCS: web site, APOGEE grid

https://marcs.astro.uu.se/

https://data.sdss.org/sas/dr17/apogee/spectro/speclib/atmos/marcs/MARCS_v3_2016/

Phoenix grid from Husser et al. (2013)

https://www.astro.uni-jena.de/Users/theory/for2285-phoenix/grid.php

https://kurucz.harvard.edu/
https://research.iac.es/proyecto/ATLAS-APOGEE/
https://data.sdss.org/sas/dr17/apogee/spectro/speclib/atmos/kurucz/
https://marcs.astro.uu.se/
https://www.astro.uni-jena.de/Users/theory/for2285-phoenix/grid.php


Interpolation of model 
atmospheres

 Interpolation code for MARCS (T. Masseron)

https://marcs.astro.uu.se/software.html

 Kmod 

https://www.as.utexas.edu/~hebe/stools/

 INNterpol

https://github.com/cwestend/iNNterpol

https://marcs.astro.uu.se/software.html
https://www.as.utexas.edu/~hebe/stools/
https://github.com/cwestend/iNNterpol


Computing models afresh
 Kurucz codes are available 

https://kurucz.harvard.edu
 Sbordone port 

(Sbordone et al. 2004) 
 mkk script

https://github.com/callendeprieto/mkk-atlas9
 Mészáros (APOGEE) port

on request to Sz. Mészáros

https://kurucz.harvard.edu/
https://github.com/callendeprieto/mkk-atlas9


Spectral synthesis (public!)
 MOOG (Sneden)
 Turbospectrum (Plez)
 SPECTRUM (Gray)
 SYNTHE (Kurucz)
 Synspec (Hubeny)
 SME (Piskunov/Valenti)           

 iSpec (Blanco Cuaresma) 

          Synple (Allende Prieto)



synple
 Python3
 Minimal, command line interface
 Wraps synspec
 Works with MARCS, Kurucz, Phoenix and 

Tlusty models
 Requires only an input model atmosphere and 

the wavelength range
 Attemps to make clever decisions for you (line lists, sampling)
 Includes parallelization tools
 Includes tools for building grids of spectra



Comparing data to models
 SME (Valenti & Piskunov 1996, Piskunov 

& Valenti 2016)
 iSpec (Blanco Cuaresma et al. 2014; 

Blanco Cuaresma 2019) 
 FERRE (Allende Prieto et al. 2006)
 BAS

See also (private): MATISSE – GAUGIN (Recio Blanco, 
Bijaui), q2 (Ramirez), BACCHUS (Masseron) ...



FERRE
 Fortran90, parallelized with OpenMP
 Intrinsically n-D, flexible to fit one, several, all dims.
 Stores pre-computed grids of synthetic spectra in RAM. Can 

PCA-compress the model database
 Interpolates in the grids with linear, quadratic or cubic 

polynomials
 Successfully used in APOGEE (also SDSS, DESI, WEAVE, etc.)
 Download from 

https://github.com/callendeprieto/ferre

https://github.com/callendeprieto/ferre


Optimization algorithms in 
FERRE

 Nelder-Mead algorithm (Neldel & Mead 
1965)

 Boender-Timmer-Rinnoy Kan (Boender et al. 
1982)

 UOBYQA (Powell 2000)
 MCMC with differential evolution (Vrugt et al. 

2009)



FERRE in APOGEE
 1st pass fitting the entire spectrum 1500-1700 nm to 

derive Teff,logg,[M/H],[alpha/M],[C/M],[N/M], vsini
 2nd pass fitting abundances, 

one element at a time 
 Increased complexity 

due to wavelength- 
and fiber-dependent 
LSF 



Is FERRE good for all?
 A bit too heavy to deploy for 1 or few stars
 RVs have to be input
 Fitting [M/H] to derive abundances does not generally work at 

lower resolution
 5-7D fits require multiple starting points for local algorithms, and 

global ones (MCMC) are expensive
 Regular grids are required by FERRE and increase complexity for 

handling large ranges in the parameters
 Size limitations already hit for APOGEE (1e4 frequencies, 7 

parameters, grids with millions of models)
 Gridding effects still appear in some dimensions



BAS
 Interpolation reduces the model evaluation (s to ms) 

but the speed bottleneck is usually access to RAM
 Pre-computing the interpolations can save additional 

time
 Move to a Bayesian scheme brings a global algorithm, 

and more reliable error bar estimates
 Uses python for coding simplicity/libraries – it’s part 

of synple



Bayesian Algorithm in Synple
 Simplest possible Bayesian algorithm: flat priors

E(x) ~ Σ x * exp(-chi/2)

covar(x,y) ~ Σ (x-E(x)) * (y-E(y)) * exp(-chi/2) 
 Use all models in an interpolated irregular grid: 

may do a lot more work than with optimization 
algorithm, but always the same → new 
opportunities for parallelization



Irregular grids: RBF
Regular Irregular



One step closer to full 
automation

 BAS recognizes the source of the data and them uses a 
specific grid

 Available grids for K-F-G-A type stars and white dwarfs
 Available for INT-IDS (MILES), HST-STIS/NICMOS, GTC-OSIRIS, 

Mayall-DESI, Gaia XP
 Incorporates cross-correlation and template matching for RV 

determination
 Incorporates on-the-fly reddening corrections
 And self-evaluation



Test results
• R=500 (360-1000 nm)



Test results
• R=55 (Gaia XP)



BAS fitting



  Interpolation errors



Uncertainty in the derived BAS parameters: Teff



New strategies with BAS
 4-5 dimensions workable with ~ 1e5 data points 

randomly distributed
 Grids with +1 dimension are then used for abundance 

determination. 
 These are exact (element X is actually changed), but 

may have limited wavelength coverage
 Parallelization for GPU exploits the nature of the 

problem: always the same models to evaluate and 
number known in advance



Grid building
 Synple includes routines for building 

regular/irregular spectral grids from existing 
model atmospheres grids (MARCS, Kurucz), 
or computing them from scratch (Kurucz)

 It also includes RBF interpolation routines for 
creating irregular grids from existing 
regular/irregular grids



NLTE 
 The overall strategy of using pre-computed spectral 

grids works the same regardless of the models
 NLTE  already  implemented in the DR7 APOGEE grids 

(Na, Mg, K, Ca) or in the SME analysis in GALAH 
 Note that NLTE effects can propagate 

from one element to another! 

(Osorio et al. 2022)



3D 
 3D models are scarce, so grid density is an issue, 

but possible to use a grid of flux ratios F(3D)/F(1D) 
on which interpolation can be used to correct high-
density F(1D) grids (Bertran de Lis et al. 2023)

 Using 3D models requires 
doing NLTE in 3D, 
not <3D> = 1D 

CIFIST MHD grid (Ludwig et al. 
2009)



Summary
 Full automation means passing a reduced spectrum 

and getting all possible information back 
(parameters and abundances)

 We do not have such software yet, 
but we need it

 It will likely be available within 1-2 years, 
and we already have an approximation
 for some data sets

 Progress is hindered by keeping codes 
and models to ourselves, so please be 
open and share them!
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