

Automated methods for abundance determination

Carlos Allende Prieto Instituto de Astrofisica de Canarias

Pioneering work by Beatriz Barbuy in 1987 using the Lick 3.1m and the Robinson-Wampler image-dissector scanner

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC 99:335-368, May 1987

CARBON AND NITROGEN ABUNDANCES IN METAL-POOR DWARFS OF THE SOLAR NEIGHBORHOOD*

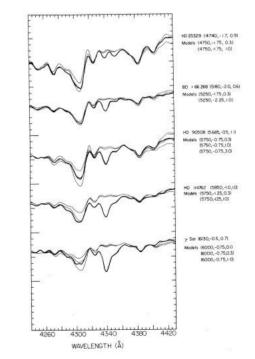
DUANE F. CARBON

NASA-Ames Research Center, MS 245-6, Moffett Field, California 94035

BEATRICE BARBUY, ROBERT P. KRAFT, AND EILEEN D. FRIEL

Lick Observatory, Board of Studies in Astronomy and Astrophysics University of California, Santa Cruz, California 95064

AND

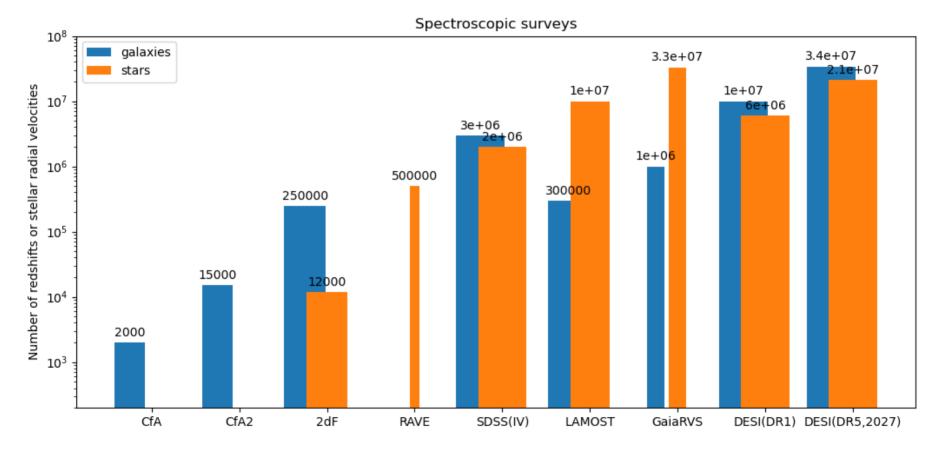

NICHOLAS B. SUNTZEFF

Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories,[‡] Casilla 603, La Serena, Chile

Received 1986 October 24, revised 1987 February 2

ABSTRACT

We have analyzed spectra of 83 subdwarfs obtained with the Lick Observatory 3.1-m Shane



The need for automation

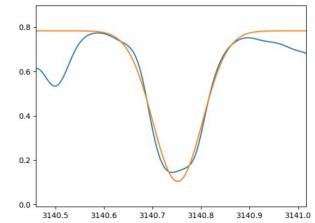
- Make the spectroscopic analysis reproducible
- Make it optimal
- Make it faster
- Cope with the data acquisition rate

Scale of surveys

Machine Learning

- In fashion!
- Can be used (e.g. CNNs) to interpolate models
- Can be used to determine parameters by training on models
- Singular stars may not be properly identified by networks trained with limited data which do not include them
- Networks can learn from built-in relationships in the training sample

Data-driven methods


- Ultimately we need quantities we cannot measure directly: Teff, logg, [C/Fe], etc. so models are strictly necessary to assign tags to stars in the first place
- Data-driven applications, in many cases, are in fact model-driven, but without control of the quality/components of the models

Analysis of stellar spectra

- Reduce the data (e.g. using MIDAS)
- [measure equivalent widths]
- Determine atmospheric parameters
 - get a model atmosphere
 - compute a synthetic spectrum, compare with data iterate
- Determine chemical abundances
 compute a synthetic spectrum, compare with data

Equivalent widths vs. spectral synthesis

- EWs condense the information about a line in one number
- Independent of broadening such as rotation, macroturbulence, instrumental profile
- Loss of information
- Cause blindness
- Errors tend to go in one direction

Model atmospheres

	purpose	name	main author(s)	features	comments	
LTE 1-D	AS	ATLAS9	R. Kurucz	hs, pp, RE+MLT	opacity distribution functions	
		ATLAS12			opacity sampling	
		MARCS	B. Gustafsson, B. Plez	hs, pp/ss, RE+MLT	opacities interpolated from pre-computed	tables
	DIA	SYNSPEC	I. Hubený, T. Lanz		used in combination with ATLAS TILLS	TV(ITE)
		SYNTHE	R. Kurucz		used in combination with ATLAS, TLUSTY(LTE)	
		Turbospectrum	B. Plez		used in combination with MARCS, ATLA	AS,
LTE 3-D	DIA	ASSET	L. Koesterke		SEDs from 3-D (RM)HD models	
NLTE 1-D	AS+FI	CMFGEN	J. Hillier, L. Dessart	unif, ss, RE	complete CMF transfer ^a	
		FASTWIND	J. Puls, E. Santolaya-Rey	unif, ss, EB	CMF transfer for individual elements ^b	
		PHOENIX	P. Hauschildt, E. Baron	unif, ss, RE+MLT	complete CMF transfer ^c	
		PoWR	WR. Hamann	unif, ss, RE	complete CMF transfer ^d	
		WM-basic	A. Pauldrach, T. Hoffmann	hd (stat.), ss, EB	Sobolev line transfer ^e	
	AS	TLUSTY	I. Hubený, T. Lanz	hs, pp, RE	used in combination with SYNSPEC	
	DIA	SYNSPEC	I. Hubený, T. Lanz		used in combination with TLUSTY	
		SYNPLE	C. Allende Prieto		python wrapper for SYNSPEC (LTE & N	LTE)
		DETAIL/SURFACE	K. Butler, J. Giddings		used in combination with ATLAS ^f or TL	USTY
		Multi	M. Carlsson		used in combination with external atm. co	odes ^g
NLTE 3-D	AS+FI	PHOENIX	P. Hauschildt, E. Baron	unified, RE+MLT	cart/sph/cyl coordinate systems possible	Dule
	DIA	Multi3d	J. Leenaarts et al. ^h		one single atom in NLTE, others in LTP	Puls,
		RH	H. Uitenbroek		multiple atoms and molecules ^j	Herrer
RMHD		CO5BOLD	B. Freytag, M. Steffen	hd (time-dep.), cart	see ^m	CAP
	AS	Bifrost	B. Gudiksen et al. ^k	hd (time-dep.), cart	see ^m	
		Stagger	Å. Nordlund et al. ¹	hd (time-dep.), cart	see ^m	2024

٢**೧**

Model atmospheres

- For cool stars Kurucz, MARCS and Phoenix are the most heavily used ones, but MARCS and Phoenix codebase are not public
- Models can be taken from existing grids
- They can be interpolated from those grids
- They can be computed afresh with open source codes (Kurucz, Tlusty)

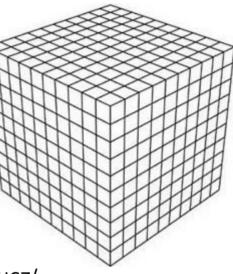
Existing grids

Kurucz: old, odfnew, Mészáros (APOGEE)

https://kurucz.harvard.edu

https://research.iac.es/proyecto/ATLAS-APOGEE/

https://data.sdss.org/sas/dr17/apogee/spectro/speclib/atmos/kurucz/

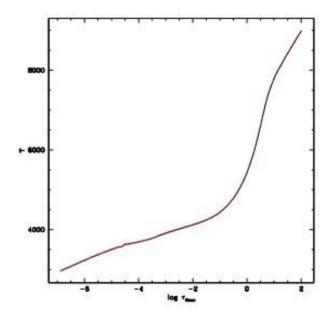

MARCS: web site, APOGEE grid

https://marcs.astro.uu.se/

https://data.sdss.org/sas/dr17/apogee/spectro/speclib/atmos/marcs/MARCS_v3_2016/

Phoenix grid from Husser et al. (2013)

https://www.astro.uni-jena.de/Users/theory/for2285-phoenix/grid.php


Interpolation of model atmospheres

- Interpolation code for MARCS (T. Masseron) https://marcs.astro.uu.se/software.html
- Kmod https://www.as.utexas.edu/~hebe/stools/
- INNterpol

https://github.com/cwestend/iNNterpol

Computing models afresh

- Kurucz codes are available https://kurucz.harvard.edu
- Sbordone port
 (Sbordone et al. 2004)
- mkk script https://github.com/callendeprieto/mkk-atlas9
- Mészáros (APOGEE) port on request to Sz. Mészáros

Spectral synthesis (public!)

- MOOG (Sneden)
- Turbospectrum (Plez)
- SPECTRUM (Gray)
- SYNTHE (Kurucz)
 - Synspec (Hubeny)
 - SME (Piskunov/Valenti)

iSpec (Blanco Cuaresma) Synple (Allende Prieto)

synple

- Python3
- Minimal, command line interface
- Wraps synspec
- Works with MARCS, Kurucz, Phoenix and Tlusty models
- Requires only an input model atmosphere a the wavelength range
- Attemps to make *clever* decisions for you (line lists, sampling)
- Includes parallelization tools
- Includes tools for building grids of spectra

4		thub.com/callendeprieto/synple					
	Debian.org @ Latest Net						
	L' synple.py	changed lambda_synth to handle m					
	다 README 책 MIT	license					
	synple						
	An Easy-to-Use Python Wrapper for the Spectral Synthesis Code Synspec						
	** install **						
	Starting in the main synple directory						
	1- Compile synspec and rotin						
	Make sure you have a fortran compiler gfortran, is expected and if you using a different compiler you will need to modify the makefile accordin						
	cd synspec						

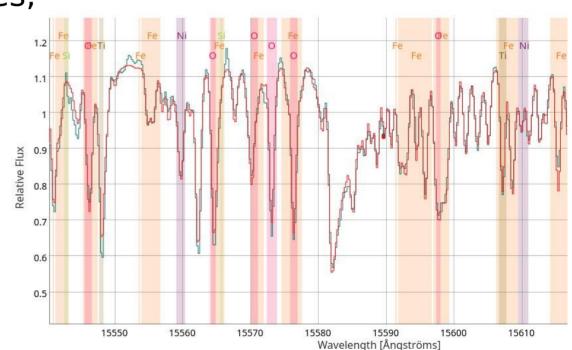
Comparing data to models

- SME (Valenti & Piskunov 1996, Piskunov & Valenti 2016)
- iSpec (Blanco Cuaresma et al. 2014; Blanco Cuaresma 2019)
- FERRE (Allende Prieto et al. 2006)
- BAS

See also (private): MATISSE – GAUGIN (Recio Blanco, Bijaui), q2 (Ramirez), BACCHUS (Masseron) ...

FERRE

- Fortran90, parallelized with OpenMP
- Intrinsically n-D, flexible to fit one, several, all dims.
- Stores pre-computed grids of synthetic spectra in RAM. Can PCA-compress the model database
- Interpolates in the grids with linear, quadratic or cubic polynomials
- Successfully used in APOGEE (also SDSS, DESI, WEAVE, etc.)
- Download from


https://github.com/callendeprieto/ferre

Optimization algorithms in FERRE

- Nelder-Mead algorithm (Neldel & Mead 1965)
- Boender-Timmer-Rinnoy Kan (Boender et al. 1982)
- UOBYQA (Powell 2000)
- MCMC with differential evolution (Vrugt et al. 2009)

FERRE in APOGEE

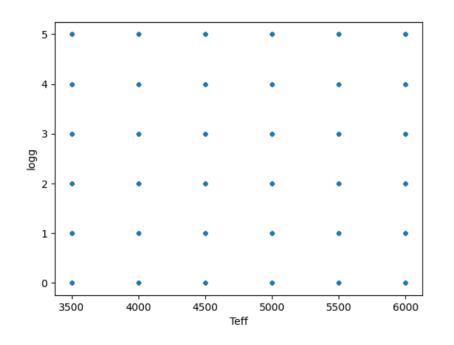
- 1st pass fitting the entire spectrum 1500-1700 nm to derive Teff,logg,[M/H],[alpha/M],[C/M],[N/M], vsini
- 2nd pass fitting abundances, one element at a time
- Increased complexity due to wavelengthand fiber-dependent LSF

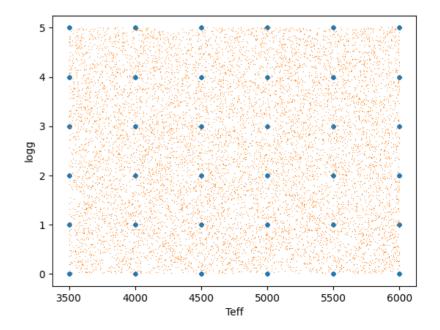
Is FERRE good for all?

- A bit too heavy to deploy for 1 or few stars
- RVs have to be input
- Fitting [M/H] to derive abundances does not generally work at lower resolution
- 5-7D fits require multiple starting points for local algorithms, and global ones (MCMC) are expensive
- Regular grids are required by FERRE and increase complexity for handling large ranges in the parameters
- Size limitations already hit for APOGEE (1e4 frequencies, 7 parameters, grids with millions of models)
- Gridding effects still appear in some dimensions

BAS

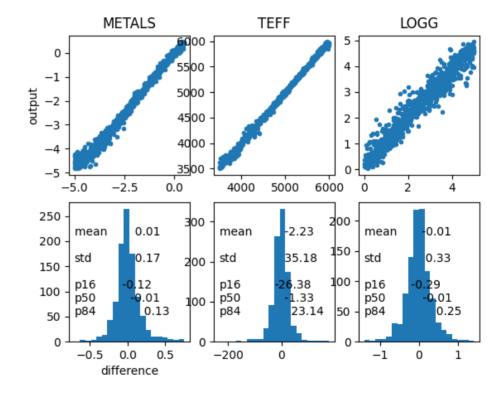
- Interpolation reduces the model evaluation (s to ms) but the speed bottleneck is usually access to RAM
- Pre-computing the interpolations can save additional time
- Move to a Bayesian scheme brings a global algorithm, and more reliable error bar estimates
- Uses python for coding simplicity/libraries it's part of synple


Bayesian Algorithm in Synple


- Simplest possible Bayesian algorithm: flat priors
 E(x) ~ Σ x * exp(-chi/2)
 covar(x,y) ~ Σ (x-E(x)) * (y-E(y)) * exp(-chi/2)
- Use all models in an interpolated irregular grid: may do a lot more work than with optimization algorithm, but always the same → new opportunities for parallelization

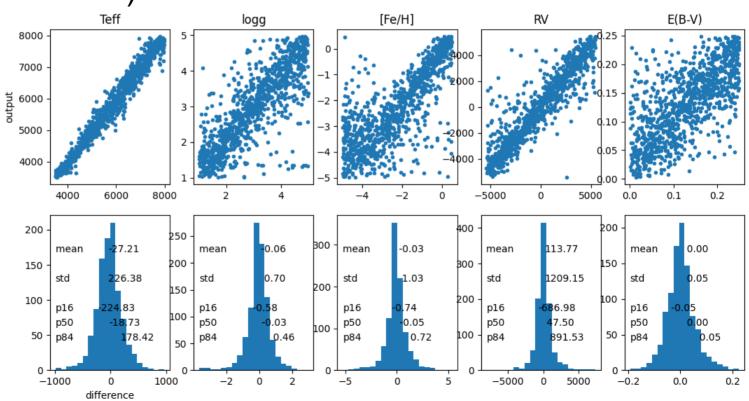
Irregular grids: RBF

Regular



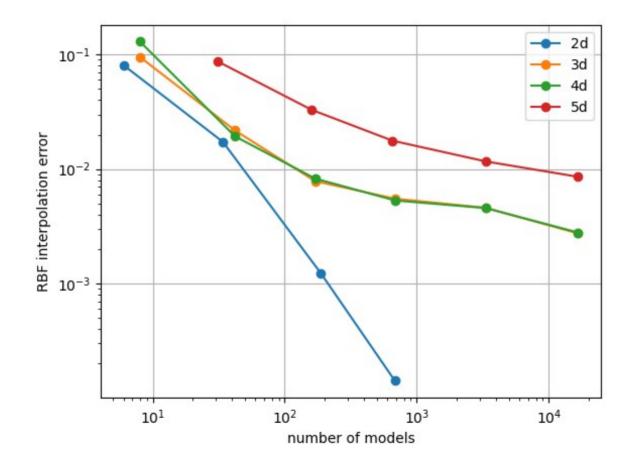
One step closer to full automation

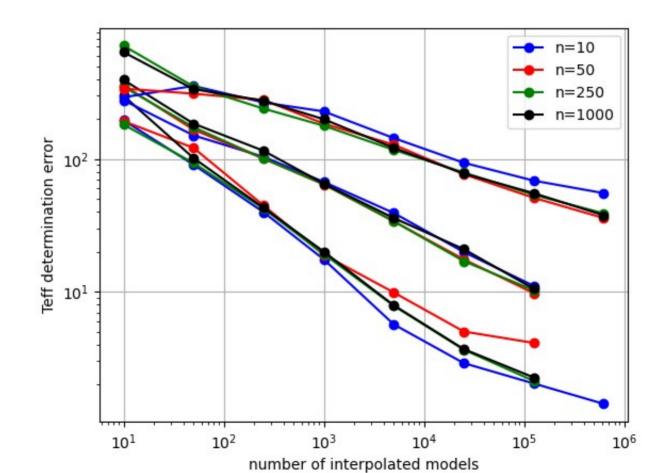
- BAS recognizes the source of the data and them uses a specific grid
- Available grids for K-F-G-A type stars and white dwarfs
- Available for INT-IDS (MILES), HST-STIS/NICMOS, GTC-OSIRIS, Mayall-DESI, Gaia XP
- Incorporates cross-correlation and template matching for RV determination
- Incorporates on-the-fly reddening corrections
- And self-evaluation


Test results

• R=500 (360-1000 nm)

Test results


• R=55 (Gaia XP)


```
cpu mem net swap 8h 41m 🔍 Figure 1
                                  📚 *coolfluxcal.pp.,, 🧉 Inbox - callend... 🏊 Terminal - call... 🏊 Terminal - IPyt... 🟝 Terminal - call... 🐔 🕵 🧔 👩 EN 💲 📇 📖 🛕
                                                                                                                    Ê
                                                                                                                         21 oct. 16:17
                                                                                                                      - (D)
                                                    Terminal - IPython: baltimore 🔻
                                                                                              Figure 1
File Edit View Terminal Tabs Help
callende@pi:/work/callende/baltimore/calspec$ ls *fits
                                                                              params: 5884.05 -- 4.54 -- 0.24 -- 17.99 -- 0.20 -- 0.01
                                a191b2b stiswfcnic 004.fits
18sco stis 004.fits
                                                                 kf
                                                                                                                    data
bd 17d4708 stisnic 007.fits hd209458 stisnic 008.fits
                                                                  si
                                                                        1.50
                                                                                                                    model
callende@pi:/work/callende/baltimore/calspec$ ipython3
                                                                                                                    residuals
frPython 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0]
                                                                        1.25
Type 'copyright', 'credits' or 'license' for more information
IPython 7.31.1 -- An enhanced Interactive Python. Type '?' f
                                                                    1.00
normalized flux
0.7:
0.5
In [1]: from symple import bas, plot spec
In [2]: bas('18sco stis 004.fits')
data appear to be from CALSPEC
                                                                        0.50
adopting synthfile n sc2-STISrbf.pickle
                                                                                                    18SCO
reading grid /work/callende/synple/grids/n sc2-STISrbf.pickle
                                                                        0.25
reading header of the grid /work/callende/synple/grids/n sc2
normalizing grid...
                                                                        0.00
reading data from file 18sco stis 004.fits...
nspec in bas: 1
                                                                                         500
                                                                                               600
                                                                                                      700
                                                                                                             800
                                                                                                                    900
                                                                                  400
spectrum 0 of 1 in 18sco stis 004.fits
                                                                                              wavelength (nm)
res= [5.88460622e+03 4.54337831e+00 2.44747185e-01] eres= [1
reduced lchi = 0.9828692796748426
RV = -23.322775657220163 km/s
res = [5.88405287e+03 \ 4.53666815e+00 \ 2.44869648e-01] eres = [1.79874828e+01 \ 1.95284456e-01 \ 1.33902690e-02]
reduced lchi = 0.9623120652904065
closing opf file: 18sco stis 004.fits.opf
    2
```

In [3]: plot_spec('18sco_stis_004.fits',res=True)

Interpolation errors

Uncertainty in the derived BAS parameters: Teff

New strategies with BAS

- 4-5 dimensions workable with ~ 1e5 data points randomly distributed
- Grids with +1 dimension are then used for abundance determination.
- These are exact (element X is actually changed), but may have limited wavelength coverage
- Parallelization for GPU exploits the nature of the problem: always the same models to evaluate and number known in advance

Grid building

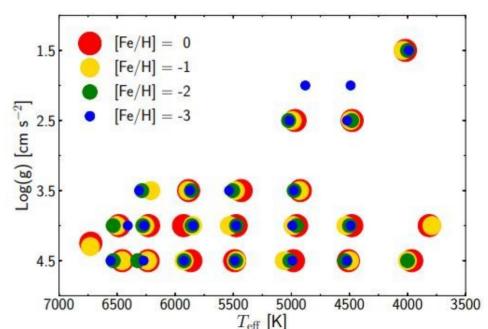
- Synple includes routines for building regular/irregular spectral grids from existing model atmospheres grids (MARCS, Kurucz), or computing them from scratch (Kurucz)
- It also includes RBF interpolation routines for creating irregular grids from existing regular/irregular grids

NLTE

- The overall strategy of using pre-computed spectral grids works the same regardless of the models
- NLTE already implemented in the DR7 APOGEE grids (Na, Mg, K, Ca) or in the SME analysis in GALAH
- Note that NLTE effects can propagate

from one element to another!

(Osorio et al. 2022)



3D

 3D models are scarce, so grid density is an issue, but possible to use a grid of flux ratios F(3D)/F(1D) on which interpolation can be used to correct highdensity F(1D) grids (Bertran de Lis et al. 2023)

 Using 3D models requires doing NLTE in 3D, not <3D> = 1D

CIFIST MHD grid (Ludwig et al. 2009)

Summary

- Full automation means passing a reduced spectrum and getting all possible information back (parameters and abundances)
- We do not have such software yet, but we need it
- It will likely be available within 1-2 years, and we already have an approximation for some data sets
- Progress is hindered by keeping codes and models to ourselves, so please be open and share them!

