THE GALACTIC BULGE

Beatriz Barbuy IAG - Universidade de São Paulo

OUTLINE

> History along our lifetime First structures, Bulge formation > Accretion: in-situ, ex-situ:AMR >Bulge globular clusters Metallicity Distribution Function >Abundances, Chemical evolution Conclusions, Challenges

HISTORY: First studies on the Bulge

Baade 1944 a,b = ApJ, 100, 137,147 Direction of NGC 6522 = bulge has Pop. II

Baade's hypothesis: nuclear bulge of the Galaxy consisting of globular cluster-like stellar population

Nassau+Blanco 1958, Van den Bergh 1972 Bulge dominated by metal-rich M stars

N6528-N6522

Bulge field in BW

NGC 6528

Whitford & Rich 1983, ApJ, 274, 723

Bulge stars are metal-rich

McWilliam+Rich94 First high-res abundances: -1.5<[Fe/H]<+0.5

History: First studies bulge clusters

> Bica & Alloin 1986, A&A, 162, 21: Library of integrated spectra of star clusters

Bica 1988:
 spectra of metal-rich clusters vs.
 spectra of Ellipticals, and bulges of spirals.

Bica Alloin 86, Bica 88

Clar 2 The most Higher and Constant to the optimized

Minniti95: inner metal-rich clusters associated with the bulge

Ortolani, Renzini, Gilmozzi, Marconi, Barbuy, Bica, Rich 1995, Nature 377,701

Near-coeval formation of Galactic bulge and halo

first data with HST: NGC 6528, 6553 coeval with 47 Tuc

→ Bulge is old

Kiraga, Paczynski & Stanek 1997, ApJ 485, 611

Bulge field is Young!

Zoccali+03 A&A, 399, 931

NTT-SOFI +NICMOS

$Zoccali+03 \rightarrow bulge is old$

Clarkson+08 ApJ, 684, 1110

Bulge is old

a grap Cal 1' stalls valented extreme bulge populati

Bensby 2017, A&A, 605, 89

Fraction of young stars

Bensby+17

[Fe/H] vs. age

Peak at -1 is old →

Renzini+18: 4 bulge windows

Renzini+18

distinguishing metal-poor and metal-rich bulge field stars \rightarrow Helium has to be taken into account (Bensby used Y2)

Demarque Y=0.29

for metal-rich *s)

He in the bulge should be higher than in the solar neighbourhood: enrichment by massive stars/SNII only

Also, uncertainties on mixing-length parameter in models: Li+2024 (Alvio on Friday)

Table 5. SEMMUL Gaussian components decomposition of field $b = -6^{\circ}$.

Pop	[Fe/H]	$\sigma_{\rm [Fe/H]}$	%	σ _r
С	-1.09 ± 0.07	0.24 ± 0.01	6 ± 2	127 ± 26
А	-0.27 ± 0.02	0.24 ± 0.01	64 ± 3	83 ± 5
В	0.14 ± 0.02	0.13 ± 0.01	30 ± 3	70 ± 6

Notes. The radial velocity dispersion σ_r is given by

Babusiaux+10,Hill+11

Zoccali+17

(also Ness+13)

Formation of the Galactic bulge

ESA; layout: ESA/ATG medialab

1.Merger scenario = bulge formation by hierarchical merging (White Rees 1978) → early classical bulge

Ness & Lang (2016)

22

WISE =Ness+Lang16

Filaments, first structures

Renaud+17

From: The origin of the Milky Way globular clusters Mon Not R Astron Soc. 2016;465(3):3622-3636. doi:10.1093/mnras/stw2969 Mon Not R Astron Soc | © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

Formation of early bulges Pillepich, Madau, Mayer 2015

24

2. In situ bulge (and thick disk) form early via strong gas accretion Tacchella+16, Dekel & Burkert+14:

The discs, fed by cold streams, undergo violent disc instability that drives gas into the centre (along with mergers).

compact star-forming systems: blue nuggets compact, quenched spheroids: red nuggets

 \rightarrow

Early disk and simultaneous formation of globulars

Tacchella+15, Science, 348,314

3. Clump scenario – migration of star forming clumps to center of early disk galaxies

Noguchi 99

also: Immeli+04, Mandelker+16

 4. Secular Evolution scenario = formation of bulge from the disk through bar instability
 Combes 2000,KK04, Shen10, Debattista14
 Brava survey – Rich+07→ cylindrical rotation

Bar instability and buckling instability → two-step heating →

Radial gradient transforms into vertical gradient

Conclusion:

ALL IS TRUE (?)

Shakespeare

Accretion of Dwarf Galaxies

Identification of accreted structures: Gaia-Enceladus-Sausage -10 Gyr ago + many others

Globular Clusters are tracers of early bulge and accreted structures

Age-metallicity relation (AMR)
 Forbes (2010), Massari (2019), Forbes (2020), Kruijssen et al. (2020), Callingham et al. (2022), Belokurov & Kravtov (2024).

- Two sequences of GCs
 Old ages >~12Gyr
 → in-situ
 - ages from 6 to 14 Gyr –
 → ex-situ

Figure 3. Age–metallicity distribution of the Galactic GC population. In all the panels, we distinguish GCs that formed ...

Kruijssen+2020

Mon Not R Astron Soc, Volume 498, Issue 2, October 2020, Pages 2472-2491, https://doi.org/10.1093/mnras/staa2452

The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 9. The AMR for the Galactic GCs split according to the Callingham+22 component with which they are associated. The solid lines ...

Mon Not R Astron Soc, Volume 513, Issue 3, July 2022, Pages 4107–4129, <u>https://doi.org/10.1093/mnras/stac1145</u> The content of this slide may be subject to copyright: please see the slide notes for details.

Galaxy merger structures

Kruijssen+2020: Sagittarius, Helmi, GSE and others

Inner bulge – to be confirmed as accreted:

Heracles, Kraken, Koala, Aurora

Kruijssen et al. (2020

34

Globular clusters: fossils of the Galactic bulge

35

HP-1 Image: Survey VVV

Barbuy +2016

Kerber+ 2019 12.8Gyr

Bica+24

61 bulge in-situ globular clusters

Bica+2024, A&A, 687, A201 ([Fe/H]>-1.5)

Lucey+21

Bulge field: extracting only bulge *s

Lucey+21 [Fe/H]<-0.8:

Bulge field: extracting only bulge *s i.e. excluding inner halo stars

Bica+2024

All bulge clusters with age

AMR of 15 old (12.3-13.5Gyr) moderately metal-'poor ([Fe/H] -1) Souza+2024, earliest = 13.57 Gyr

Example of GC accreted Located in inner bulge: VVV CL001:

R_v=-326 km/s, E(B-V)=2.20 [Fe/H]=-2.45 → most metal-poor GC in the Galaxy (halo ESO280-SC06 [Fe/H]=-2.45) Both possibly associated with GES, or Sequoia

Fernández-Trincado+2021,ApJ, 908, L42: Gemini/IGRINS: [Fe/H]=-2.4, -2.1 (11 stars)

A main uncertainty: distances

Example: **Palomar 6**: = $d_{Sun} = 5.8$ kpc (Harris) \rightarrow thick disc $d_{Sun} = 8.9$ kpc (Ortolani+95) \rightarrow bulge.

Using Harris=Baumgardt +19, Pérez-Villegas+20 → thick disc with a probability of 98%.

Souza+21: Age=12.4 \pm 0.9 Gyr, d_{Sun} = 7.67 \pm 0.19 kpc \rightarrow bulge

The same discrepancy with NGC 6558: Gaia BV21: 7.47 kpc,Souza+24: 8.5 kpc

Deep Optical and NIR isochrone fitting needed

Gaia distances are uncertain for distances above ~6 kpc

Gaia data – Orbits + chemistry Six-dimensional phase space, calculation of Integrals of Motion (IOM): Studies on orbits and corresponding Energy vs. Angular momentum L_z .

Massari+2019, Kruijssen+2019,2020,
Forbes(2020), Callingham+2022.
Orbits: Pérez-Villegas+2020.
→ Classification of clusters to progenitors

Integrals of motion -Callingham et al. 2022

The BAR

Buck+18: Galaxy's bar 8 ± 2 Gyr ago. Bovy+18 : ~8 Gyr ago. Nepal+24: ~3 Gyr ago. Sanders+24: ~8-11 Gyr ago (Mira's in NSD)

Pérez-Villegas+20: GCs are in the bar → trapped by the bar Most are not supporting the bar structure

7 clusters that are supporting the bar → do not necessarily support the X-shape.

Metallicity distribution function - MDF

BW

Barbuy, Chiappini, Gerhard18

-80

Ness+13

Rojas-Arriagada+20 APOGEE MDF vs Surveys

[Fe/H] = +0.32,-0.17, -0.66 dex

Chemical enrichment & Nucleosynthesis α-elements: O, Mg, Si, Ca, Ti: Supernovae type II = CCSNae

Iron-peak: Fe, Ni → Supernovae type Ia (+1/3 from SNII)

Heavy elements: SNII at explosion, merging of NS, BHs (r-elements)

Bulge field – Barbuy+18 ARA&A, 56, 223 SFR = 2 Gyr

Looking closer \rightarrow

58 stars of Bulge spheroid

SFR = 1 Gyr

sSFR v = 1Gyr⁻¹

Models from A. Friaça

Nissen+ Schuster10

[Na/Fe]

[Mg/Fe]

Nissen+ Schuster10

Odd-Z Na

Iron-peak Cr, Ni

Figure 4. Na/Fe] versus [Fe/H] for literature bulge field stars and 11 APOGEE aspcap DR17 abundances, plus 4 BAWLAS ...

Barbuy +2023

Mon Not R Astron Soc, Volume 526, Issue 2, December 2023, Pages 2365–2376, https://doi.org/10.1093/mnras/stad2888

The content of this slide may be subject to copyright: please see the slide notes for details.

Smiljanic+16: over 1000 disk stars (Gaia-ESO)

Figure 5. [Al/Fe] versus. [Fe/H] for literature bulge field stars and the APOGEE abundances (original DR17) for the 58 ...

v = 1,3 Gyr⁻¹

SFR in Mo Gyr-1 M gas

Mon Not R Astron Soc, Volume 526, Issue 2, December 2023, Pages 2365–2376, https://doi.org/10.1093/mnras/stad2888

The content of this slide may be subject to copyright: please see the slide notes for details.

Barbuy, Friaça+24

58 bulge stars

Nissen+24: α:Mg, iron-peak: Sc, V,Co

Abundance pattern bulge GCs (Souza+21)

Conclusions:

Bulge formation: probably a mix of scenarios

Stellar populations: a mix of a small early bulge, inner thin & thick disk, halo, + accreted dwarfs + bar (Queiroz+20,21)

Bulge is old but a fraction of younger stars is possible, mainly among metal-rich bar ones
→ but He is not know, and needed for age

Continued Conclusions:

Bulge GCs are old: 12.3 to 13.5 Gyr.

Old globular clusters: formed in-situ very early

Later trapped in the bar (Pérez-Villegas+2020)
→ possibility to have formed the
GCs in the bar? → only if bar formed very early

MDF: +- agreement on metallicity peaks

Continued Conclusions:

Abundances of α's: Mg, Si, Ti (not Ca), Na, iron-peak:Sc, V, Mn, Co, Ni, Cu, Zn (not Cr) can indicate in-situ or ex-situ origin

Chemical Evolution models with a fast star formation rate of 1 Gyr do reproduce the observed abundances.

Challenges: Measurement of He abundances vs. age

- High-resolution spectroscopy of turn-off stars (and subgiants) => crowding
- Most primitive stars in the proto-MW: metal-poor? or in fact the moderately metal-poor? Inner halo vs bulge
- More important mechanism to form the bulge?
- Early bulge (1Gyr) vs. accreted ? in situ vs. ex situ
Bland-Hawthorn+Gerhard MW: SBbc(rs) ARA&A 2017 Sb?

Sb(r)

NGC 1288

SBbc(r)

NGC 1232 SBbc(r)

NGC 3953

NGC 3124

Sb(r)

NGC 6384

SBc(rs)

SBbc(r)

NGC 3992

SBb(rs)

NGC 2336

The End