Data, errors & visualization

Simple statistics

Astronomy Hale Bradt Methods

Measure

An Introduction to Observational Astronomy

Frederick R. Chromey

Pierre Léna - Daniel R François Lebrun - François Mignard **Didier Pelat**

Observational Astrophysics Third Edition

AA

Springer

Philip R. Bevington & D. Keith Robinson 2002, 3rd edition

Astronomy Methods. H. Bradt, 2004.

Section 6.5, pp. 151 - 172

To Measure the Sky. An Introduction to **Observational** Astronomy. F. R. Chromey, 2010. Chapter 2.

Observational Astrophysics, 3rd Ed., P. Lena et al., 2012. Appendix B 1

M.Sc. in Applied Statistics MT2004

Robust Statistics

http://www.stats.ox.ac.uk/pub/StatMeth/Robust.pdf ©1992–2004 B. D. Ripley¹

Economic Statistics

http://www.scribd.com/doc/75349300/Economic-Statistics

Estatística Robusta Aplicada aos Títulos do Tesouro

Direto

https://bdm.unb.br/bitstream/10483/13245/1/2015_RhayssaMaiaCostaPinto.pdf

Rhayssa Maia Costa Pinto

Visualization

Free version at: Welco https://clauswilke.com/dataviz/ Prefa

O'REILLY'

Fundamentals of Data Visualization

A Primer on Making Informative and Compelling Figures

Claus O. Wilke

Data Visualization	15 Visualizing geospatial data
Welcome	16 Visualizing uncertainty
Preface	Part II: Principles of figure design
1 Introduction	17 The principle of proportional ink
Part I: From data to visualization	18 Handling overlapping points
2 Visualizing data: Mapping data onto a.	19 Common pitfalls of color use
3 Coordinate systems and axes	20 Redundant coding
4 Color scales	21 Multi-panel figures
5 Directory of visualizations	22 Titles, captions, and tables
6 Visualizing amounts	23 Balance the data and the context
7 Visualizing distributions: Histograms	24 Use larger axis labels
8 Visualizing distributions: Empirical cu.	25 Avoid line drawings
9 Visualizing many distributions at once	26 Don't go 3D
10 Visualizing proportions	Part III: Miscellaneous topics
11 Visualizing nested proportions	27 Understanding the most commonly u
12 Visualizing associations among two .	28 Choosing the right visualization soft
13 Visualizing time series and other fun.	29 Telling a story and making a point
14 Visualizing trends	30 Annotated bibliography

Significant figures

Distance to the Galactic Center

Malkin, Zinovy. Statistical analysis of the determinations of the Sun's Galactocentric distance 2013, IAU Symp 289, 406

Significant figures

Table 1: Previous average estimates of R_0					
Paper	Period covered	R_0 , kpc			
Kerr & Lynden-Bell (1986)	1974 - 1986	8.5 ± 1.1			
Reid (1989)	1974 - 1987	7.7 ± 0.7			
Reid (1993)	1974 - 1992	8.0 ± 0.5			
Nikiforov (2004)	1974 - 2003	7.9 ± 0.2			
Avedisova (2005)	1992 - 2005	7.8 ± 0.32			

Accuracy and precision

figura 3 Visualização dos conceitos de precisão e exactidão num alvo. Em (a) o conjunto de tiros (resultados) apresenta uma baixa precisão pois apresentam uma dispersão apreciável e uma exactidão razoável visto que não apresentam um desvio sistemático do centro do alvo. Em (b) a precisão é mais elevada (os tiros estão menos dispersos) e a exactidão é mais baixa pois os tiros encontram-se "sistematicamente" afastados para a direita do alvo.

Erros experimentais – uma abordagem pedagógica.

ISABELM.A.FONSECA

Accuracy and precision

	Accurate	Inaccurate (systematic error)
Precise		
Imprecise (reproducibility error)		

http://www.wellesley.edu/Chemistry/Chem105manual/Appendices/ uncertainty_analysis.html

Accuracy and precision

http://dels-old.nas.edu/ilar_n/ilarjournal/49_2/html/v4902Simmons.shtml

How to define the uncertainty (or error) ?

• Error = "True Value" – Measurement

 If we know the true value, why bothering with the measurement?

Definitions of error

- Error of a measurement x_i (precision) : δx_i = x_i <x>
- Relative error: δx_i/<x>
- Discrepancy (related to accuracy) = x_i x_{true}
- Relative discrepancy = (x_i x_{true})/x_{true}
- Statistical "error": random fluctuations of the measurements that limit the precision of the result
- Systematic error: tends to deviate the measurement from the real value, limiting the accuracy of the result
- spread = largest result smallest result

Example

- "True" value = 100,0 cm
- Measurements: 99,4 99,2 99,5 99,3 99,1 cm
- <x> = 99,3 cm (mean)
- δx_i = 0,1 -0,1 +0,2 0,0 -0,2 cm
- $\delta x_i / \langle x \rangle = +0,001 -0,001 +0,002 0,000 -0,002$

+0,1% -0,1% +0,2% 0.0% -0,2%

- Discrepancy = -0,6 -0,8 -0,5 -0,7 -0,9 cm
- Relative discrepancy = -0,6, -0,8 -0,5 -0,7 -0,9 %
- Systematic error = ???

A 🎺	ccuracy	and	pre	cisi	on	
Systematic er	ror 🗸	_Limit		5	Rar	ndom error
1	A	D		С	В	
2	A I	D	С			В
Trial 3	A ¢I	D				В
4	C A I	D			В	
5 — C	Α	D	2	2	В	
14.0		4.2 Mag	nitude	14.4	85	
	Astronomer	А	В	С	D	
	Trial 1	14.115	14.495	14.386	14.2	
	Trial 2	14.073	14.559	14.322	14.2	
	Trial 3	14.137	14.566	14.187	14.2	
	Trial 4	14.161	14.537	14.085	14.2	
	Trial 5	14.109	14.503	13.970	14.2	
	Mean	14.119	14.532	14.190	14.2	
	Deviation from truth	-0.004	+0.409	+0.067	+0.077	
	Spread	0.088	0.071	0.418	0	
	σ	0.033	0.032	0.174	0	
	S	0.029	0.029	0.156	0	13
	Uncertainty of the mean	0.013	0.013	0.070	(0.05)	

Distance to the GC Random and systematic errors

 R_0 determinations with estimation of both statistical and systematic errors

Paper	R_0, kpc
Nishiyama et al. (2006)	$R_0 = 7.52 \pm 0.10 _{stat} \pm 0.35 _{syst}$
Groenewegen et al. (2008)	$R_0 = 7.94 \pm 0.37 _{stat} \pm 0.26 _{syst}$
Trippe et al. (2008)	$R_0 = 8.07 \pm 0.32 _{stat} \pm 0.13 _{syst}$
Gillessen et al. (2009b)	$R_0 = 8.33 \pm 0.17 _{stat} \pm 0.31 _{syst}$
Gillessen et al. (2009a)	$R_0 = 8.28 \pm 0.15 _{stat} \pm 0.29 _{syst}$
Matsunaga et al. (2009)	$R_0 = 8.24 \pm 0.08 _{stat} \pm 0.42 _{syst}$
Sato et al. (2010)	$R_0 = 8.3 \pm 0.46 _{stat} \pm 1.0 _{syst}$

Population and Sample of a population

- **Population** is the **whole** set of measurements
- **Sample** is a **part** (representative or not) of the population
- Small populations could be fully studied. *Ex.: age* of students of AGA5802
- Big populations can be studied through samples. Ex.: weight of each person on Earth (7 billions !!!)

Population of papers/person Published papers

Be careful about bias in your sample !!!

http://www.worldmapper.org/

Population of height (adults) on Earth

How to select a representative sample (without bias)?

	Average	Average	Ratio	Sample		Share of	
Country	male height	female height	(male femal	eto populat e) age ran	tion / ge	pop. over Methodology 15 covered	Yea
Argentin	a 1.73 m	1.60 m	1.08	17 (healthy) N/A	Measured 2000	
Bolivia / Aimara	1.600 m	1.422 m	1.13	20–29	N/A	Measured 1970	
Brazil	1.71 m	1.59 m	1.07	18+	93.2%	6 Measured 2008–20	09
China	1.66 m	1.57 m	1.06	Rural, 17	N/A	Measured 2002	
China	1.70 m	1.59 m	1.07	Urban, 17	N//	A Measured 2002	
German	y 1.81 m	1.68 m	1.08	18–25	N/A	A Self-reported 2009)
German	Y 1.78 m	1.65 m	1.08	18+	96.5%	6 Self-reported 2009	1
Netherlar	nds 1.83 m	n 1.70 m	1.08	20–30	N//	A Self-reported 201	0
Perú	1.64 m	1.510 m	1.09	20+	85.4	% Measured 2005 1	7

Selection bias Is your sample representative of the population? If there is a bias -> wrong conclusions

Mon. Not. R. Astron. Soc. 349, 757–767 (2004)

Lithium abundances of the local thin disc stars David L. Lambert¹ and Bacham E. Reddy^{1,2*}

A curiosity is that the Sun's lithium abundance $[\log \epsilon(\text{Li}) = 1.0 - \text{Müller}, \text{Peytremann & de la Reza 1975}]$ appears to fall by more than 1 dex below the trend defined by the field stars (see Fig. 3). If placed among NGC 188's stars, the Sun would be deemed very Li-poor. Among M67's stars, the Sun would be one of the most Li-poor stars. This hint that the Sun may be 'peculiar' as regards the depletion of lithium weakens its value as a calibrator for prescriptions of non-standard modes of lithium astration.

Studied 450 dwarf stars of type F and G in different mass and metallicity regimes 19

Is the solar Li abundace peculiar ?

Astrophys Space Sci (2010) 328: 193-200

The solar, exoplanet and cosmological lithium problems

J. Meléndez · I. Ramírez · L. Casagrande · M. Asplund ·

B. Gustafsson · D. Yong · J.D. do Nascimento Jr. ·

M. Castro · M. Bazot

A&A 519, A87 (2010)

Lithium depletion in solar-like stars: no planet connection

P. Baumann¹, I. Ramírez¹, J. Meléndez², M. Asplund¹, and K. Lind³

Solar twins in open cluster and field stars

The Sun is normal in lithium compared to others 1-solarmass stars at 4.6 Gyr

> (Melendez et al. 2010; Baumann et al. 2010)

nature Vol 462 12 November 2009

Enhanced lithium depletion in Sun-like stars with orbiting planets

Garik Israelian^{1,2}, Elisa Delgado Mena^{1,2}, Nuno C. Santos^{3,4}, Sergio G. Sousa^{1,3}, Michel Mayor⁴, Stephane Udry⁴, Carolina Domínguez Cerdeña^{1,2}, Rafael Rebolo^{1,2,5} & Sofia Randich⁶

You cannot compare apples and oranges ...

comparer des pommes avec des oranges comparer des pommes et des poires

Li depletion is not enhanced in planet hosts ! Comparing apples & apples (only stars with similar stellar

parameters within 2-sigma)

Li depletion is not enhanced in planet hosts !

Conclusion (year 2022) on lithium in stars with and without planets (sem viés na comparação):

there is no difference in Li abundance between stars with and without planets

But, in 2023:

Actually, stars with planets may be somewhat less abundant in lithium (~0,25 dex) relative to stars without planets (based on 194 stars from Carlos et al. 2019, Giulia Martos et al. 2023, Anne Rathsam et al. 2023) Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY MNRAS **522**, 3217–3226 (2023) Advance Access publication 2023 April 21

https://doi.org/10.10

Metallicity and age effects on lithium depletion in solar analogues

Preprint 27 May 2023

Compiled

Giulia Martos,* Jorge Meléndez, Anne Rathsam and Gabriela Carvalho Silva

Departamento de Astronomia, IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil

Lithium depletion in solar analogs: age and mass effects

Example of populations & samples

Population	Sample	Better sample
1000 colored marbles mixed in a container: 500 red, 499 blue, 1 purple	5 marbles drawn at random from the container	50 marbles drawn at random
The luminosities of each star in the Milky Way galaxy (about 10 ¹¹ values)	The luminosities of each of the nearest 100 stars (100 values)	The luminosities of 100 stars at random locations in the galaxy (100 values)
The weights of every person on Earth	The weights of each person in this room	The weights of 100 people drawn from random locations on Eart
Age of each star in ⁻ Or he Galaxy? ⁻ Gl - Sp - Ha - Bu	pen cluster? 2 obular cluster? p piral arms? r alo? 6 ulge?	20 stars in 50 "random" places (actually, epresentative) in the Galaxy (1000 values) 29

Central Value & Standard Deviation of a **Population x**, of *M* elements (in total)

Central value:
Mean (average):
$$\mu = \frac{1}{M} \sum_{i=1}^{M} x_i$$

Median: value that divides the population exactly in half

Mode: is the value that occurs most often.

Standard deviation:

$$\sigma = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (x_i - \mu)^2}$$

Central Value & Standard deviation estimated of a population using a sample of N elements

Average <**x>**:
$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Estimated standard deviation: $s = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N} (x_i - \bar{x})^2}$

Use N - 1 instead of N because $\langle x \rangle$ is only an estimate of μ .

Example, population of heights in 5 girls: Population: 149, 151, 153, 152, 169 cm. μ = 154,8cm. σ = 7,22cm Sample: 151, 152 cm. <x> = 151,5 cm, σ = 0,5cm, s = 0,70cm Sample: 149, 169 cm. <x> = 159 cm, σ = 10cm, s = 14cm Sample: 149,151,169 cm. <x> = 156,3 cm, σ = 9cm, s = 11cm

The sample mean & sample standard deviation are estimates of the mean μ and σ of the population

Stellar populations in our galaxy

34

Stellar populations in our galaxy

Bensby, T. et al. 2003, A&A, 410, 527

The selection of thick and thin disk stars is done by assuming that the Galactic space velocities (U_{LSR} , V_{LSR} , and W_{LSR} , see Appendix A) of the stellar populations in the thin disk, the thick disk, and the halo have Gaussian distributions,

 $TD/D = \frac{X_{TD}}{X_{D}} \cdot \frac{f_{TD}}{f_{D}}$

 $TD/H = \frac{X_{TD}}{X_{H}} \cdot \frac{f_{TD}}{f_{H}}$

Estimated central value (sample) & "True" central value (μ) of a population

Variance & estimated standard deviation are similar to the "true values of a population" for N >> 1

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

$$\sigma^{2} \approx s^{2}$$

$$\sigma^{2} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2} = \lim_{N \to \infty} \frac{1}{N - 1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

$$= \lim_{N \to \infty} s^{2}$$

 $N \rightarrow \infty$

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \approx \sigma$$

Weighted mean

$$y_c = \sigma_c^2 \sum_{i=1}^n \left(\frac{y_i}{\sigma_i^2} \right)$$
$$\frac{1}{\sigma_c^2} = \sum_{i=1}^n \left(\frac{1}{\sigma_i^2} \right)$$

• Example:

$$y_1 = 18 \pm 3 \text{ cm}, y_2 = 16 \pm 4 \text{ cm}$$

 $y_c = (3)*144/25 = 17,3 \text{ cm} \pm 2,4 \text{ cm}$
 $1/\sigma^2 = (1/16) + (1/9) = 25/144, \sigma^2 = 144/25$

Distribuição das medidas

Fig. 2. Radial velocity histogram of four stellar clusters after removing stars according to the second selection method, that is, star velocity difference to the central peak of the distribution larger than 3σ .

Physica A 384 (2007) 507–515 Radial velocities of open stellar clusters: A new solid constraint favouring Tsallis maximum entropy theory

J.C. Carvalho^a, B.B. Soares^a, B.L. Canto Martins^a, J.D. do Nascimento Jr.^a, A. Recio-Blanco^b, J.R. De Medeiros^{a,*}

The Gaussian, or normal, distribution

Sum of the variance $\sigma^2 = \sigma_1^2 + \sigma_2^2$

- Example: $\sigma_1 = 3 \text{ cm}$, $\sigma_2 = 4 \text{ cm}$
- Total error? σ = 5cm

Robust statistics (ordem)

- Trimean = (Q1 + 2 Median + Q3)/4
- interquartile deviation: IQ = Q3 Q1
- quartile deviation : QD = IQ/2
- MAD = median { |x_i median | }

pseudo- σ :

- σ_{MAD} = 1,4826 MAD
- $\sigma_{\rm QD}$ = 1,4826 QD
- $\sigma_{QD} = IQ/1,349$

Median = Q2

Example

- 2 5 5 6 6 6 9 9 9 9 150 (sorted)
- 11 elements
- <x> = 19,6 σ = 41,3
- Mode = 9
- Q2 = Median (50% of population) = 6
- Q1 (25% of population) = 5
- Q3 (75% of population) = 9
- Trimean = 6,5 IQ = 4 QD = 2 $\sigma(QD) = 3,0$
- NOTA: if we eliminate the last point (150) we obtain $\langle x \rangle = 6,6 e \sigma = 2,2$

chi squared,
$$\chi^2$$
 $\chi^2 \equiv \sum_i \left[\frac{y_{\text{ob},i} - y_{\text{th},i}}{\sigma_i}\right]^2$

THE ASTROPHYSICAL JOURNAL, 659:L25–L28, 2007 April 10 MAGNESIUM ISOTOPES IN METAL-POOR DWARFS: THE RISE OF AGB STARS AND THE FORMATION TIMESCALE OF THE GALACTIC HALO¹

How to prepare observing proposals Tip #13: Justify your sample size

• Important to justify any sample size (1, 10, 1000)

• Is half the sample enough for your aims? Or actually you need twice as many objects?

In some cases assume binomial distribution

THE ASTROPHYSICAL JOURNAL, 757:164 (13pp), 2012 October 1 © 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/757/2/164

OXYGEN ABUNDANCES IN LOW- AND HIGH- α FIELD HALO STARS AND THE DISCOVERY OF TWO FIELD STARS BORN IN GLOBULAR CLUSTERS

I. RAMÍREZ¹, J. MELÉNDEZ², AND J. CHANAMÉ³

 ¹ McDonald Observatory and Department of Astronomy, University of Texas a ² Departamento de Astronomia do IAG/USP, Universidade de São Pa ³ Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Received 2012 May 23; accepted 2012 Augus

Since we have analyzed 67 stars, the fraction of metal-poor field stars originating from second-generation globular cluster (GC) stars is ~ 3% (2/67). Adopting a binomial distribution (i.e., field and GC), an error bar can be estimated from the variance of the probability distribution (e.g., Bevington 1969, Chapter 3):

 $\sigma^2 = np(1 - p)$, where n = 67 is the number of stars and p is the probability of "success" (p = 2/67 = 0.03). We find $\sigma = 1.4$, which implies a probability

Example adopting a binomial distribution

- You know that roughly 2% of objects are of a given class in a random sample of stars
- If you want to discover 1 such object, you will need to observe at least 50 stars. What is the error?
- $\sigma^2 = np(1-p) = 50 \times 0.02 (1-0.02) = 0.98$
- $\rightarrow \sigma = 0.99 \text{ star}; in percent: 100% x (0.99/50) = 2%$
- What about observing 200 stars?
- $\sigma^2 = 200 \times 0.02 (1 0.02) = 3.92 \rightarrow \sigma = 1.98 \text{ stars}$
- \rightarrow Fraction 2% ± 100% x (1.98/200) = 2.0 ± 1.0 %

Visualization

Figure 4. Lithium abundances versus stellar age colour coded by [Fe/H] (top panel), mass (middle panel), and the mass of the convective envelope (bottom panel). HIP 54287 is labelled in the lower panel because, as discussed in the text, it could have engulfed a planet.

Monthly Notices of an astronomical society	۲
MNRAS 485, 4052–4059 (2019) Advance Access publication 2019 March 8	doi:10.1093/mnras/stz681

The Li-age correlation: the Sun is unusually Li deficient for its age

M. Carlos,¹* J. Meléndez,¹ L. Spina,² L. A. dos Santos[•],³ M. Bedell[•],⁴ I. Ramirez,⁵ M. Asplund,⁶ J. L. Bean,⁷ D. Yong,⁶ J. Yana Galarza¹ and A. Alves-Brito⁸

Lithium, mass and age (Anne Rathsam et al. submitted to MNRAS, 2023) Fig. 16.15: The straight blue line represents the best linear fit to the data, and the gray band around the line shows the uncertainty in the linear fit. The gray band represents a 95% confidence level.

60

