Data, errors \& visualization

Simple statistics

Philip R. Bevington \& Bradt, 2004.
D. Keith Robinson Section 6.5, pp. 2002, $3^{\text {rd }}$ edition

Astronomy Methods. H.

To Measure the Sky. An
Introduction to Observational Astronomy. F. R. Chromey, 2010. Chapter 2.

Atriximicuthtuphastay

Pierre téna - Daniel Pomen
Francois Lebrun-Francois Mignard Didier Pelat

Observational Astrophysics

Third Edition

A

Observational

Astrophysics,
$3^{\text {rd }}$ Ed., P. Lena et al., 2012.
Appendix B

Robust statistics

M.Sc. in Applied Statistics MT2004

Robust Statistics

http://www.stats.ox.ac.uk/pub/StatMeth/Robust.pdf (C) 1992-2004 B. D. Ripley ${ }^{1}$

Economic Statistics

http://www.scribd.com/doc/75349300/Economic-Statistics
Estatística Robusta Aplicada aos Títulos do Tesouro
Direto Rhayssa Maia Costa Pinto
https://bdm.unb.br/bitstream/10483/13245/1/2015_RhayssaMaiaCostaPinto.pdf

Visualization

Free version at:

https://clauswilke.com/dataviz/

Data Visualization

Welcome
Preface

O'REILLY*

Fundamentals of Data

 VisualizationA Primer on Making Informative

Part I: From data to visualization

2 Visualizing data: Mapping data onto a.
3 Coordinate systems and axes
4 Color scales
5 Directory of visualizations
6 Visualizing amounts
7 Visualizing distributions: Histograms
8 Visualizing distributions: Empirical cu.
9 Visualizing many distributions at once
10 Visualizing proportions
11 Visualizing nested proportions
12 Visualizing associations among two
13 Visualizing time series and other fun
14 Visualizing trends

15 Visualizing geospatial data

16 Visualizing uncertainty

Part II: Principles of figure design
17 The principle of proportional ink
18 Handling overlapping points
19 Common pitfalls of color use
20 Redundant coding
21 Multi-panel figures
22 Titles, captions, and tables
23 Balance the data and the context
24 Use larger axis labels
25 Avoid line drawings
26 Don't go 3D
Part III: Miscellaneous topics
27 Understanding the most commonly u..

29 Telling a story and making a point
30 Annotated bibliography

Measurements (or estimates)

 Distance to the Galactic Center$$
R_{0}=8.0 \pm 0.25 \mathrm{kpc}
$$

Estimate of the real value Estimate of the uncertainty Unit

Malkin, Zinovy. Statistical analysis of the determinations of the Sun's Galactocentric distance

2013, IAU Symp 289, 406

Significant figures

Distance to the Galactic Center

$$
\begin{aligned}
& R_{0}= 8.0 \sqrt{25 \mathrm{kpc}} \\
& 8,0 \pm 0,3 \mathrm{kpc} \text { or }
\end{aligned}
$$

3 significant figures 2 significant figures

Malkin, Zinovy. Statistical analysis of the determinations of the Sun's Galactocentric distance 2013, IAU Symp 289, 406

Significant figures

Table 1: Previous average estimates of R_{0}

Paper Period covered $\quad R_{0}, \mathrm{kpc}$

Kerr \& Lynden-Bell (1986)	$1974-1986$	8.5 ± 1.1
Reid (1989)	$1974-1987$	7.7 ± 0.7
Reid (1993)	$1974-1992$	8.0 ± 0.5
Nikiforov (2004)	$1974-2003$	7.9 ± 0.2
Avedisova (2005)	$1992-2005$	7.8 ± 0.32

Accuracy and precision

(a) Accuracy: fair

Precisão: baixa
Exactidão: razoável

(b) Accuracy: low

Precisão: elevada
Exactidão: baixa
figura 3 Visualização dos conceitos de precisão e exactidão num alvo. Em (a) o conjunto de tiros (resultados) apresenta uma baixa precisão pois apresentam uma dispersão apreciável e uma exactidão razoável visto que não apresentam um desvio sistemático do centro do alvo. Em (b) a precisão é mais elevada (os tiros estão menos dispersos) e a exactidão é mais baixa pois os tiros encontram-se "sistematicamente" afastados para a direita do alvo.

Erros experimentais - uma abordagem pedagógica.
ISABELM.A.FONSECA

Accuracy and precision

http://www.wellesley.edu/Chemistry/Chem105manual/Appendices/ uncertainty_analysis.html

Accuracy and precision

http://dels-old.nas.edu/ilar_n/ilarjournal/49_2/html/v4902Simmons.shtml

How to define the uncertainty (or error) ?

- Error = "True Value" - Measurement
- If we know the true value, why bothering with the measurement?

Definitions of error

- Error of a measurement x_{i} (precision) : $\boldsymbol{\delta} \mathbf{x}_{\mathrm{i}}=\mathbf{x}_{\mathrm{i}}-\langle\mathrm{x}\rangle$
- Relative error: $\boldsymbol{\delta} \mathbf{x}_{\mathrm{i}} /<x>$
- Discrepancy (related to accuracy) $=\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\text {true }}$
- Relative discrepancy $=\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\text {true }}\right) / \mathbf{x}_{\text {true }}$
- Statistical "error": random fluctuations of the measurements that limit the precision of the result
- Systematic error: tends to deviate the measurement from the real value, limiting the accuracy of the result
- spread = largest result - smallest result

Example

- "True" value $=100,0 \mathrm{~cm}$
- Measurements: 99,4 99,2 99,5 99,3 99,1 cm
- $\langle x\rangle=99,3 \mathrm{~cm}$ (mean)
- $\delta x_{i}=0,1 \quad-0,1+0,2 \quad 0,0-0,2 \mathrm{~cm}$
- $\delta x_{i} /\langle x\rangle=+0,001-0,001+0,0020,000-0,002$

$$
+0,1 \% \quad-0,1 \% \quad+0,2 \% \quad 0.0 \% \quad-0,2 \%
$$

- Discrepancy $=-0,6-0,8-0,5-0,7 \quad-0,9 \mathrm{~cm}$
- Relative discrepancy $=-0,6,-0,8-0,5-0,7-0,9 \%$
- Systematic error = ???

\longleftarrow Accuracy and precision

Systematic error

Distance to the GC

Random and systematic errors

R_{0} determinations with estimation of both statistical and systematic errors

Paper	R_{0}, kpc
Nishiyama et al. (2006)	$R_{0}=7.52 \pm\left. 0.10\right\|_{\text {stat }} \pm\left. 0.35\right\|_{\text {syst }}$
Groenewegen et al. (2008)	$R_{0}=7.94 \pm\left. 0.37\right\|_{\text {stat }} \pm\left. 0.26\right\|_{\text {syst }}$
Trippe et al. (2008)	$R_{0}=8.07 \pm\left. 0.32\right\|_{\text {stat }} \pm\left. 0.13\right\|_{\text {syst }}$
Gillessen et al. (2009b)	$R_{0}=8.33 \pm\left. 0.17\right\|_{\text {stat }} \pm\left. 0.31\right\|_{\text {syst }}$
Gillessen et al. (2009a)	$R_{0}=8.28 \pm\left. 0.15\right\|_{\text {stat }} \pm\left. 0.29\right\|_{\text {syst }}$
Matsunaga et al. (2009)	$R_{0}=8.24 \pm\left. 0.08\right\|_{\text {stat }} \pm\left. 0.42\right\|_{\text {syst }}$
Sato et al. (2010)	$R_{0}=8.3 \pm\left. 0.46\right\|_{\text {stat }} \pm\left. 1.0\right\|_{\text {syst }}$

Population and

Sample of a population

- Population is the whole set of measurements
- Sample is a part (representative or not) of the population
- Small populations could be fully studied. Ex.: age of students of AGA5802
- Big populations can be studied through samples. Ex.: weight of each person on Earth (7 billions !!!)

Population of papers/person

 Published papers

Population of height (adults) on Earth

 How to select a representative sample (without bias) ?

Selection bias

Is your sample representative of the

 population? If there is a bias \rightarrow wrong conclusions

Mon. Not. R. Astron. Soc. 349, 757-767 (2004)

Lithium abundances of the local thin dise stars

David L. Lambert ${ }^{1}$ and Bacham E. Reddy ${ }^{1,2 \star}$

A curiosity is that the Sun's lithium abundance $[\log \epsilon(\mathrm{Li})=1.0-$ Müller, Peytremann \& de la Reza 1975] appears to fall by more than 1 dex below the trend defined by the field stars (see Fig. 3). If placed among NGC 188's stars, the Sun would be deemed very Li-poor. Among M67's stars, the Sun would be one of the most Li-poor stars. This hint that the Sun may be 'peculiar' as regards the depletion of lithium weakens its value as a calibrator for prescriptions of non-
$\operatorname{Mass}\left(\mathrm{M}_{\odot}\right)$
Studied 450 dwarf stars of type F and G in different mass and metallicity regimes standard modes of lithium astration.

Is the solar Li abundace peculiar?

Age (Gyr)

Astrophys Space Sci (2010) 328: 193-200
The solar, exoplanet and cosmological lithium problems
J. Meléndez • I. Ramírez • L. Casagrande • M. Asplund •
B. Gustafsson • D. Yong • J.D. do Nascimento Jr. .
M. Castro • M. Bazot

Lithium depletion in solar-like stars: no planet connection
P. Baumann ${ }^{1}$, I. Ramírez ${ }^{1}$, J. Meléndez ${ }^{2}$, M. Asplund ${ }^{1}$, and K. Lind ${ }^{3}$

naturevol $462 \mid 12$ November $2009 \mid$ Enhanced lithium depletion in Sun-like stars with orbiting planets

Garik Israelian ${ }^{1,2}$, Elisa Delgado Mena ${ }^{1,2}$, Nuno C. Santos ${ }^{3,4}$, Sergio G. Sousa ${ }^{1,3}$, Michel Mayor ${ }^{4}$, Stephane Udry ${ }^{4}$, Carolina Domínguez Cerdeña ${ }^{1,2}$, Rafael Rebolo ${ }^{1,2,5}$ \& Sofia Randich ${ }^{6}$

Planet-host stars around solar $T_{\text {eff }}$ seem depleted in Li

Figure 1 | Lithium abundance plotted against effective temperature in solar-analogue stars with and without detected planets. The planet-

You cannot compare apples and oranges ...

comparer des pommes avec des oranges
comparer des pommes et des poires

You cannot add pears and apples ...
No puedes sumar peras con manzanas

Comparing apples \& apples

Li depletion is not enhanced in planet hosts !

 Comparing apples \& apples (only stars with similar stellar parameters within 2-sigma)

OPlanet hosts
OComparison

Baumann,
Ramírez,
Meléndez, \&
Asplund
2010, A\&A,
519, A87

Li depletion is not enhanced in planet hosts !

Conclusion (year 2022) on lithium in stars with and without planets (sem viés na comparação):
there is no difference in Li abundance between stars with and without planets

But, in 2023:
Actually, stars with planets may be somewhat less abundant in lithium ($\sim 0,25$ dex) relative to stars without planets (based on 194 stars from Carlos et al. 2019, Giulia Martos et al. 2023, Anne Rathsam et al. 2023)

Metallicity and age effects on lithium depletion in solar analogues

Lithium depletion in solar analogs: age and mass effects

Example of populations \& samples

Population	Sample	Better sample
1000 colored marbles mixed in a container: 500 red, 499 blue, 1 purple	5 marbles drawn at random from the container	50 marbles drawn at random
The luminosities of each star in the Milky Way galaxy (about 10^{11} values)	The luminosities of each of the nearest 100 stars (100 values)	The luminosities of 100 stars at random locations in the galaxy (100 values)
The weights of every person on Earth	The weights of each person in this room	The weights of 100 people drawn from random locations on Earth
Age of each star in the Galaxy?	cluster? lar cluster? arms?	20 stars in 50 "random" places (actually, representative) in the Galaxy (1000 values)

Central Value \& Standard Deviation of a Population $\boldsymbol{x}_{\boldsymbol{i}}$ of \boldsymbol{M} elements (in total)

Central value:
Mean (average): $\mu=\frac{1}{M} \sum_{i=1}^{M} x_{i}$
Median: value that divides the population exactly in half
Mode: is the value that occurs most often.
Standard deviation:

$$
\sigma=\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left(x_{i}-\mu\right)^{2}}
$$

Central Value \& Standard deviation estimated of

 a population using a sample of \mathbf{N} elementsAverage $\langle\boldsymbol{x}\rangle: \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

Use $N-1$ instead of N because $\langle x>$ is only an estimate of μ.
Example, population of heights in 5 girls: Population: 149, 151, 153, 152, $169 \mathrm{~cm} . \mu=154,8 \mathrm{~cm} . \sigma=7,22 \mathrm{~cm}$
Sample: 151, $152 \mathrm{~cm} .<x>=151,5 \mathrm{~cm}, \sigma=0,5 \mathrm{~cm}, s=0,70 \mathrm{~cm}$ Sample: 149, $169 \mathrm{~cm} .<x>=159 \mathrm{~cm}, \sigma=10 \mathrm{~cm}, \mathrm{~s}=14 \mathrm{~cm}$ Sample: $149,151,169 \mathrm{~cm} .\langle x\rangle=156,3 \mathrm{~cm}, \sigma=9 \mathrm{~cm}, \mathrm{~s}=11 \mathrm{~cm}$

Mean μ \& standard deviation σ of a population of M elements and sample mean \& sample standard deviation of a sample of N elements

population distribution

$$
\mu=\frac{1}{M} \sum_{i=1}^{M} x_{i}
$$

The standard deviation tell us about the spread of a population

$$
\sigma=\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left(x_{i}-\mu\right)^{2}}
$$

variable of interest
sample

The sample mean \& sample standard deviation are estimates of the mean μ and σ of the population

Standard deviation of the mean of n samples, σ_{n}

Also known as standard error (SE)

population distribution

> -Istandard deviation

$$
\sigma=\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left(x_{i}-\mu\right)^{2}}
$$

variable of interest
sampling distribution of the means
For different samples (for ex., different experiments for a given sample) we can have a distribution of sample means and the SE tell us how precise are the different estimates

Stellar populations in our galaxy

Speed ($\mathrm{km} \mathrm{s}^{-1}$)
GROUP A: Variance $=57.25 \mathrm{~km}^{2} / \mathrm{s}^{2}, \sigma=7.57 \mathrm{~km} / \mathrm{s}$. Mean $=12.85 \mathrm{~km} / \mathrm{s}$

Stellar populations in our galaxy

Bensby, T. et al. 2003, A\&A, 410, 527

$$
\mathrm{TD} / \mathrm{D}=\frac{X_{\mathrm{TD}}}{X_{\mathrm{D}}} \cdot \frac{f_{\mathrm{TD}}}{f_{\mathrm{D}}}
$$

$$
\mathrm{TD} / \mathrm{H}=\frac{X_{\mathrm{TD}}}{X_{\mathrm{H}}} \cdot \frac{f_{\mathrm{TD}}}{f_{\mathrm{H}}}
$$

The selection of thick and thin disk stars is done by assuming that the Galactic space velocities $\left(U_{\mathrm{LSR}}, V_{\mathrm{LSR}}\right.$, and W_{LSR}, see Appendix A) of the stellar populations in the thin disk, the thick disk, and the halo have Gaussian distributions,
$f(U, V, W)=k \cdot \exp \left(-\frac{U_{\mathrm{LSR}}^{2}}{2 \sigma_{U}^{2}}-\frac{\left(V_{\mathrm{LSR}}-V_{\mathrm{asym}}\right)^{2}}{2 \sigma_{V}^{2}}-\frac{W_{\mathrm{LSR}}^{2}}{2 \sigma_{W}^{2}}\right),(1)$ where

$$
k=\frac{1}{(2 \pi)^{3 / 2} \sigma_{U} \sigma_{V} \sigma_{W}}
$$

Thick Disk

$X \quad \sigma_{U} \quad$	σ_{V}	σ_{W}
$\left[\mathrm{~km} \mathrm{~s}^{-1}\right]$		$\quad V_{\text {asym }}$

Thin disk (D)	0.94	35	20	16	-15
Thick disk (TD)	0.06	67	38	35	-46
Halo (H)	0.0015	160	90	90	-220

Thin Disk

Bulge

Globular Clusters

Estimated central value (sample)

\& "True" central value (μ) of a population

$\mu=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i}=\lim _{N \rightarrow \infty} \bar{x}$
$\mu \approx \bar{x}$

Variance \& estimated standard

deviation are similar to the "true values

of a population" for $\mathrm{N} \gg 1$

$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

$$
\sigma^{2} \approx s^{2}
$$

$$
\begin{gathered}
\sigma^{2}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\lim _{N \rightarrow \infty} \frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} \\
=\lim _{N \rightarrow \infty} s^{2} \\
s=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}} \approx \sigma
\end{gathered}
$$

Weighted mean

$$
\begin{gathered}
y_{c}=\sigma_{c}^{2} \sum_{i=1}^{n}\left(y_{i} / \sigma_{i}^{2}\right) \\
1 / \sigma_{c}^{2}=\sum_{i=1}^{n}\left(1 / \sigma_{i}^{2}\right)
\end{gathered}
$$

- Example:
$\mathrm{y}_{1}=18 \pm 3 \mathrm{~cm}, \mathrm{y}_{2}=16 \pm 4 \mathrm{~cm}$
$y_{c}=(3) * 144 / 25=17,3 \mathrm{~cm} \pm 2,4 \mathrm{~cm}$
$1 / \sigma^{2}=(1 / 16)+(1 / 9)=25 / 144, \sigma^{2}=144 / 25$

Distribuição das medidas

Radial Velocity (km/s)
Fig. 2. Radial velocity histogram of four stellar clusters after removing stars according to the second selection method, that is, star velocity difference to the central peak of the distribution larger than 3σ.
Physica A 384 (2007) 507-515
Radial velocities of open stellar clusters: A new solid constraint favouring Tsallis maximum entropy theory

J.C. Carvalho ${ }^{\text {a }}$, B.B. Soares ${ }^{\text {a }}$, B.L. Canto Martins ${ }^{\text {a }}$, J.D. do Nascimento Jr. ${ }^{\text {a }}$,

A. Recio-Blanco ${ }^{\text {b }}$, J.R. De Medeiros ${ }^{\text {a }}$

The Gaussian, or normal, distribution

$$
P_{\mathrm{G}}(x, \mu, \sigma) \mathrm{d} x=\frac{\mathrm{d} x}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]
$$

Sum of the variance

$$
\sigma^{2}=\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}
$$

- Example: $\sigma_{1}=3 \mathrm{~cm}, \sigma_{2}=4 \mathrm{~cm}$
- Total error? $\sigma=5 \mathrm{~cm}$

Robust statistics (ordem)

- Trimean $=(\mathrm{Q} 1+2$ Median $+\mathrm{Q} 3) / 4$
- interquartile deviation: IQ = Q3-Q1
- quartile deviation : $Q D=I Q / 2$
- $\mathrm{MAD}=\operatorname{median}\left\{\left|\mathrm{x}_{\mathrm{i}}-\operatorname{median}\right|\right\}$
pseudo- σ :
- $\sigma_{\text {MAD }}=1,4826 \mathrm{MAD}$
- $\sigma_{Q D}=1,4826 \mathrm{QD}$
- $\sigma_{Q D}=I Q / 1,349$

Median = Q2

Example

- $2 \begin{array}{lllllllllll} & 5 & 5 & 6 & 6 & 6 & 9 & 9 & 9 & 9 & 150 \text { (sorted) }\end{array}$
- 11 elements
- $\langle x\rangle=19,6 \quad \sigma=41,3$
- Mode = 9
- Q2 $=$ Median (50\% of population) $=6$
- Q1 (25\% of population) = 5
- Q3 (75\% of population) $=9$
- Trimean $=6,5 \quad I Q=4 \quad Q D=2 \quad \sigma(Q D)=3,0$
- NOTA: if we eliminate the last point (150) we obtain $<x>=6,6$ e $\sigma=2,2$
.
chi squared, χ^{2}

$$
\chi^{2} \equiv \sum_{i}\left[\frac{y_{\mathrm{ob}, i}-y_{\mathrm{th}, i}}{\sigma_{i}}\right]^{2}
$$

The Astrophysical Journal, 659:L25-L28, 2007 April 10
MAGNESIUM ISOTOPES IN METAL-POOR DWARFS: THE RISE OF AGB STARS AND THE FORMATION TIMESCALE OF THE GALACTIC HALO ${ }^{1}$ Jorge Meléndez and Judith G. Cohen

How to prepare observing proposals

Tip \#13: Justify your sample size

- Important to justify any sample size ($1,10,1000$)
- Is half the sample enough for your aims? Or actually you need twice as many objects?

In some cases assume binomial distribution

OXYGEN ABUNDANCES IN LOW- AND HIGH- α FIELD HALO STARS AND THE DISCOVERY OF TWO FIELD STARS BORN IN GLOBULAR CLUSTERS

I. Ramírez ${ }^{1}$, J. Meléndez ${ }^{2}$. and J. Chanamé ${ }^{3}$
${ }^{1}$ McDonald Observatory and Department of Astronomy, University of Texas ε
${ }^{2}$ Departamento de Astronomia do IAG/USP, Universidade de São P_{i}
${ }^{3}$ Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de
Received 2012 May 23; accepted 2012 Augus

Figure 7. $[\mathrm{Na} / \mathrm{Fe}]$ vs. $[\mathrm{O} / \mathrm{Fe}]$ relation for the stars in Figure 1. Sodiun abundances are from Nissen \& Schuster (2010). Typical error bars are shown a the bottom left corner.

Since we have analyzed 67 stars, the fraction of metal-poor field stars originating from second-generation globular cluster (GC) stars is ~ 3% (2/67). Adopting a binomial distribution (i.e., field and GC), an error bar can be estimated from the variance of the probability distribution (e.g., Bevington 1969, Chapter 3):
$\sigma^{2}=n p(1-p)$, where $n=67$ is the number of stars and p is the probability of "success" (p $=2 / 67=0.03$). We find $\sigma=1.4$, which implies a probability
error of $1.4 / 67=2 \%$.

Example adopting a binomial distribution

- You know that roughly 2% of objects are of a given class in a random sample of stars
- If you want to discover 1 such object, you will need to observe at least 50 stars. What is the error?
- $\sigma^{2}=n p(1-p)=50 \times 0.02(1-0.02)=0.98$
$\rightarrow \sigma=0.99$ star; in percent: $100 \% \times(0.99 / 50)=2 \%$
- What about observing 200 stars?
- $\sigma^{2}=200 \times 0.02(1-0.02)=3.92 \rightarrow \sigma=1.98$ stars
\rightarrow Fraction $2 \% \pm 100 \% \times(1.98 / 200)=2.0 \pm 1.0 \%$

Visualization

color

shape

line width
size
\square

Figure 4. Lithium abundances versus stellar age colour coded by $[\mathrm{Fe} / \mathrm{H}]$ (top panel), mass (middle panel), and the mass of the convective envelope (bottom panel). HIP 54287 is labelled in the lower panel because, as discussed in the text, it could have engulfed a planet.

convection zone
Giulia Martos, TG, 2022

Size of the symbol proportional to mass of the convection zone

Lithium, mass and age
(Anne Rathsam et al. submitted to MNRAS, 2023)

Fig. 16.15: The straight blue line represents the best linear fit to the data, and the gray band around the line shows the uncertainty in the linear fit. The gray band represents a 95% confidence level.

Fig. 16.16: In contrast to Fig.

