AGA5802

Prism spectroscopy

- Introduction
- Basic information about design of spectrographs
- Prism spectrographs
- Applications

Bibliography: To Measure the Sky, Kitchin, Lena and others, like a book by C. Kitchin specifically on Optical Astronomical Spectroscopy (on line formation and instrumentation)

Prof. Jorge Meléndez

In 1835, the French philosopher Auguste Comte, considered the limits of human knowledge. He thought that the chemical composition of the stars was a prime example of "unobtainable knowledge":

On the subject of stars, all investigations which are not ultimately reducible to simple visual observations are ... necessarily denied to us ... We shall never be able by any means to study their chemical composition

Continuous (optical)

spectrum

Newton (1666)

Line spectrum

Infrared

 spectrum William Herschel (1800)

Emission spectrum

 John Herschel (son of William) and William Henry Fox Talbot, 1820s
A Method of Examining Refractive and Dispersive Powers, by Prismatic Reflection

I cannot conclude these observations on dispersion, without remarking that the colours into which a beam of white light is separable by refraction, appear to me to be neither 7 , as they usually are seen in the rainbow, nor reducible by any means (that I can find) to 3, as some persons have conceived; but that, by employing a very narrow pencil of light, 4 primary divisions of the prismatic spectrum may be seen, with a degree of distinctness that, I believe, has not been described nor observed before.

The line A that bounds the red side of the spectrum is somewhat confused, which seems in part owing to want of power in the eye to converge red light. The line B, between red and green, in a certain position of the prism, is perfectly distinct; so also are D and E, the two limits of violet. But C, the limit of green and blue, is not so clearly marked as the rest; and there are also, on each side of this limit, other distinct dark lines, f and g, either of which, in an imperfect experiment, might be mistaken for the boundary of these colours.

Fraunhofer found 574 lines in the solar spectrum (1817)

DENKSCHRIFTEN
DEE

HÖNIGLICHEN

AKADEMIE DER WISSENSCHAFTEN
ZU MUNCHEN
FOR DIE JAHAE
1814 VAD 1815.
Bestimmung

$$
\mathrm{des}
$$

Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten, in

Bezug auf die Vervollkommnung achromatischer Fernröhre.

Joseph Fraunhofer,

Fraunhofer,

 father of astronomical spectroscopyJoseph Fraunhofer (1814-1815), in Denkschriften der Königlichen Akademie der Wissenschaften zu München

Ich habe auch mit derselben Vorrichtung Versuche mit dem Lichte einiger Fixsterne erster Gröfse gemacht. Da aber das Licht dieser Sterne noch vielmal schwächer ist, als das der Venus, so ist natürlich auch die Helligkeit des Farbenbildes vielmal geringer. Demohngeachtet habe ich, ohne Täuschung, im Farbenbilde vom Lichte des Sirius drey breite Streifen gesehen, die mit jenen vom Sonnenlichte keine Aehnlichkeit zu haben scheinen; einer dieser Streifen ist im Grlinen, und zwey im Blauen. Auch im Farbenbilde vom Lichte anderer Fixsterne erster Gröfse erkennt man Streifen; doch scheinen diese Sterne, in Beziehung auf die Streifen, unter sich verschieden zu seyn.
With the same device [i.e., spectroscope], I've also made some experiments on the light of some stars of the first magnitude. Since the light of these stars is many times weaker than that of Venus, so naturally the brightness of the spectrum is also many times less. Notwithstanding, I have seen -- without any illusion -- three broad stripes in the spectrum of Sirius, which seem to have no similarity to those of sunlight; one of these stripes is in the green, and two in the blue. Also, in the spectrum of the light of other fixed stars of the first magnitude, one detects stripes; yet these stars, in regard to the stripes, seem to differ among themselves.

William Huggins, 7 Feb 1824 - 12 May 1910.
~1860 Gustav Kirchhoff identified sodium in the Sun

- 1862 Anders Ångstrom identified hydrogen in the Sun
- 1864 W. Huggins identified H, Fe, Na and Ca in stars He also studied the spectra of comets and nebulae

He built his own instruments and introduced a comparison "laboratory" spectrum to determine precisely the wavelengths of stars.

1868: Radial velocity of Sirius

Characteristics of spectra

- Wavelength λ, frequency v ou velocity \mathbf{v}
- Spectral resolution: $\Delta \lambda, \Delta v, \Delta \mathbf{v}$ $\Delta \lambda, \Delta v, \Delta v$: spectral resolution element in wavelength, frequency or velocity
- Resolving power : R
$R=\lambda / \Delta \lambda, R=v / \Delta v, R=c / \Delta v$
- Spectral coverage : $\lambda_{\text {min }}-\lambda_{\text {max }}$

Low spectral resolution ($\Delta \lambda \geq 1 \AA$) vs.

 High spectral resolution ($\Delta \lambda \sim 0,1 \AA$)

Nature Vol. 290
The survey was carried out in 1979-80. Upper detection limits of about 1.2 Jy were attained with the use of long integration times and a maser amplifier front-end, the total system temperature ranging from 250 to 400 K . Spectral information was provided by a 47 -channel spectrometer, $100-\mathrm{kHz}$ bandwidth filter bank, giving a velocity resolution of 1.35 km s^{-1}. Two vertically polarized feed horns were used in beam-

We concentrated our search for the $J=6_{16}-5_{23}$ transition of the water maser line ($f=22235.08 \mathrm{MHz}$) in two of the strongest H (II) regions in the LMC ${ }^{6}$-N157 (ref. 7, 30 Doradus) and N159-and in two dark nebulae ${ }^{8}$-Hodge 47 and Hodge 52. Huggins et al. ${ }^{9}$ studied these four regions in their carbon monoxide survey.

A water vapour maser in the Large Magellanic Cloud

E. Scalise Jr

CRAAM/INPE: Instituto de Pesquisas Espaciais, Conselho Nacional de Desenvolvimento, Cientifico e Tecnológico-CNPq, CP 515, 12200-São José dos Campos, SP, Brasil

M. A. Braz

CNPq-Observatório Nacional, Rua Pará, 277, 01243-São Paulo, SP, Brasil

Fig. 1 Water vapour spectrum of N159 (RA 05 h 40 min 24 s DEC. $-69^{\circ} 46^{\prime} .0,1950.0$). The main feature appears at 233.6 km s^{-1} with respect to the Local Standard of Rest.

$\Delta v=1,35 \mathrm{~km} / \mathrm{s}$

$R=221000$

R ~ 60 000, HRS (HET/McDonald) - single-object

A DETECTION OF $\mathrm{H} \alpha$ IN AN EXOPLANETARY EXOSPHERE

Adam G. Jensen ${ }^{1}$, Seth Redfield ${ }^{1}$, Michael Endl ${ }^{2}$, William D. Cochran ${ }^{2}$, Lars Koesterke ${ }^{2,3}$, and Travis Barman ${ }^{4}$
${ }^{1}$ Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459, USA;
Adam.Jensen@gmail.com, sredfield@wesleyan.edu
2 Department of Astn
${ }^{3}$ Texas

Figure 1. Examples of the spectra in the echelle order that contains $\mathrm{H}_{1} \lambda 6562$ for all four targets, along with the spectra of their respective telluric standard stars from the same night of observation. All spectra are reduced from the raw echelle images but are not processed with the additional steps we discuss in Section 2.2 (including removal of the $\mathrm{H} \alpha$ feature from the telluric spectra, telluric correction from the primary target, and normalization). The target spectra are shown on the count scale of the y-axis, but the telluric spectra are scaled to have the same maximum as the corresponding target spectra and then arbitrarily shifted by 25% of that same maximum The global shanes of the spectra are dominated by the blaze function of the echelle.

A DETECTION OF H α IN AN EXOPLANETARY EXOSPHERE

Adam G. Jensen ${ }^{1}$, Seth Redfield ${ }^{1}$, Michael Endl ${ }^{2}$, William D. Cochran ${ }^{2}$, Lars Koesterke ${ }^{2,3}$, and Travis Barman ${ }^{4}$
${ }^{1}$ Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459, USA;

Figure 3. The $\mathrm{H} \alpha$ transmission spectra of our four targets. The binned transmission spectrum is shown in red of the binned points). For reference, the master out-of-transit spectrum of the star is shown at the top with gr showing the zero level and the top of each plot being unity in the normalized spectrum. A blue dashed line s purple vertical dot-dashed lines define the bandpass that is integrated to make our absorption measurements; to the edges of the plot.

R ~ 7000, DEIMOS (Keck) - multi-object

THE DYNAMICS AND METALLICITY DISTRIBUTION OF THE DISTANT DWARF GALAXY VV124* 1,1 Mpc
Evan N. Kirby ${ }^{1,3}$, Judith G. Cohen ${ }^{1}$, and Michele Bellazzini ${ }^{2}$
${ }^{1}$ California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125, USA

Figure 12. Metallicity distribution for member stars. Error bars are calculated with Poisson statistics. Best-fitting, analytic models of chemical evolution are shown as colored curves. The red and blue lines overlap almost exactly.

White dwarfs with metals in the spectrum may be engulfing rocky material

Chemical signatures of rocks in White Dwarfs

The Astrophysical Journal, 584:L91-L94, 2003 February 20 A TIDALLY DISRUPTED ASTEROID AROUND THE WHITE DWARF G29-38

M. Jura

The Astrophysical Journal, 709:950-962, 2010 February 1
CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

Chemical signatures of rocky material in White Dwarfs

Klein et al. 2010, ApJ 709, 950

Terminology for spectral lines

Bensby, Feltzing, Lundström 2004, A\&A 415, 155

Continuum: the region without line absorption

Absorption lines from the Balmer series in star B9 III (~ A0 III)

Normalized spectrum

Relative flux = flux / continuo

Points: HIP 56948 (solar twin)
Solid line: Sun
Meléndez et al. (2012, A\&A 543, A29)

All lines show "wings", but they are more clear in the stronger lines

Points: HIP 56948 (solar twin)
Solid line: Sun
Meléndez et al. (2012, A\&A 543, A29)

The strength of a line can be quantified by its equivalent Width (W)

In the optical, absorption lines W ~ 0.01 nm . Weak lines, $\mathrm{W} \sim 10^{-3} \mathrm{~nm}$.

Line Depth and Full Width at Half Maximum (FWHM)

Spectral resolution Δv

a $R \sim 0$
Resolving power $R=v / \Delta v$
Fig. 8.4 Observation of a spectral line at increasing resolution. (a) $R \sim 0$.
(b) The line appears. (c) The line appears double, but unresolved (blended). (d) The two lines are resolved.
(e) The true width of the lines is attained, and line purity can be no further improved by increasing R. The horizontal line shows the instrumental spectral width $\Delta v=v_{0} / R$ used in each observation

Frequency v

Examples of spectral lines

Table 8.1 Examples of discrete transitions

Transition	Energy $[\mathrm{eV}]$	Spectral Region	Example
Hyperfine structure	10^{-5}	Radiofrequencies	21 cm hydrogen line
Spin-orbit coupling	10^{-5}	Radiofrequencies	1667 MHz transitions of OH molecule
Molecular rotation	$10^{-2}-10^{-4}$	Millimetre and infrared	$\begin{aligned} & \text { 1-0 transition of } \mathrm{CO} \\ & \text { molecule at } 2.6 \mathrm{~mm} \end{aligned}$
Molecular rotation-vibration	$1-10^{-1}$	Infrared	H_{2} lines near $2 \mu \mathrm{~m}$
Atomic fine structure	$1-10^{-3}$	Infrared	Ne II line at $12.8 \mu \mathrm{~m}$
Electronic transitions of atoms, molecules and ions	$10^{-2}-10$	Ultraviolet, visible, infrared	Lyman, Balmer series, etc., of H , resonance lines of CI , He I, and K, L shell electron lines (Fe XV, O VI)
Nuclear transitions	$>10^{4}$	X and γ rays	${ }^{12} \mathrm{C}$ line at 15.11 keV
Annihilations	$\gtrsim 10^{4}$	γ rays	Positronium line at 511 keV

© Lena $3^{\text {rd }}$ Ed or Table $5.12^{\text {nd }}$ Ed.

Spectral lines carry important information

Characteristics Information
Line center: - Element, line transition

- Radial velocity (kinematics, binarity, planets)

Equivalent
Width:

- Chemical composition
- Temperature, Gravity

FWHM: - Projected rotation velocity (vxsin i)
Profile:

- Velocity field

Flux variations: - H \& K lines (rotation, activity cycle)
Polarization: - Magnetic field

Convection

Figure 1: Left: Quiet solar granulation as observed with the 1 m Swedish Solar Telescope (courtesy Mats Carlsson 2004). Right: High-resolution CO^{5} BOLD simulation of solar surface convection. Both images show the emergent continuum intensity (using identical scaling) at $\lambda 4364 \AA$ in a field measuring $15^{\prime \prime} \times 15^{\prime \prime}$ $(11 \times 11 \mathrm{Mm}$).

The Solar Photospheric Nitrogen Abundance. Determination with 3D and 1D model atmospheres.

> E.Maiorca $^{\mathrm{A}}$, E.Caffau $^{\mathrm{B}}$, P.Bonifacic ${ }^{\mathrm{C}, \mathrm{B}, \mathrm{D}}$, M.Busso $^{\mathrm{A}, \mathrm{H}}$, R.Faraggiana $^{\mathrm{E}}$, M.Steffen $^{\mathrm{F}}$, H.-G.Ludwig $^{\mathrm{C}, \mathrm{B}}$, K.Kamp $^{\mathrm{G}}$

$\Delta \lambda \mathrm{km} / \mathrm{s}$

http://astro.uwo.ca/~dfgray/Granulation.html

Asymmetry in the line profile introduced by convection

How to detect planets in an active star?

Suppression of convection in active regions can distort the line profile \rightarrow spurious RV variations

Basic components of the Spectrograph

Dispersing element

- Diffraction Grating: diffraction+interference

- Prism: differential refraction

Prism as a dispersing element

$$
\mathrm{n}_{\mathrm{air}} \sin \theta_{\text {air }}=\mathrm{n}_{\text {glass }} \sin \theta_{\text {glass }}
$$

Table 1.1.5.

	Refractive index at the specified wavelengths (nm)				
Glass type	361	486	589	656	768
Crown	1.539	1.523	1.517	1.514	1.511
High dispersion crown	1.546	1.527	1.520	1.517	1.514
Light flint	1.614	1.585	1.575	1.571	1.567
Dense flint	1.705	1.664	1.650	1.644	1.638

$n($ air $)=1.0003$
© Kitchin

Dispersing element: prism

Snell law in a prism

$\mu_{1} \sin i=\mu_{2} \sin r$
μ_{1} (or n_{1}) is ~ 1 (air), so : $n_{1} \sin i_{1}=n_{2} \sin r_{1}$ means that $n_{2}=\sin i_{1} / \sin r_{1}$ In the same way: $\mathrm{n}_{2} \sin \mathrm{i}_{2}=\mathrm{n}_{1} \sin \mathrm{r}_{2} \rightarrow \mathrm{n}_{2}=\sin \mathrm{r}_{2} / \sin \mathrm{i}_{2}$

Figure 4.1.8. Optical path in a prism.
© Kitchin

Refractive index (μ_{λ} or n_{λ}) varies with wavelength

 In the visible the variation of n_{λ} may be approximated by the Hartmann dispersion formula. A, B and C are known as the Hartmann constants$$
\mu_{\lambda}=A+\frac{B}{\lambda-C}
$$

Table 1.1.5.

Refractive index at the specified wavelengths (nm)

Glass type	361	486	589	656	768
Crown	1.539	1.523	1.517	1.514	1.511
High dispersion crown	1.546	1.527	1.520	1.517	1.514
Light flint	1.614	1.585	1.575	1.571	1.567
Dense flint	1.705	1.664	1.650	1.644	1.638

© Kitchin

$$
\mu_{\lambda}=A+\frac{B}{\lambda-C} .
$$

If the refractive index is known at three different wavelengths, then we can obtain three simultaneous equations for the constants, from equation (4.1.42), giving

$$
\begin{equation*}
C=\frac{\left[\left(\frac{\mu_{1}-\mu_{2}}{\mu_{2}-\mu_{3}}\right) \lambda_{1}\left(\lambda_{2}-\lambda_{3}\right)-\lambda_{3}\left(\lambda_{1}-\lambda_{2}\right)\right]}{\left[\left(\frac{\mu_{1}-\mu_{2}}{\mu_{2}-\mu_{3}}\right)\left(\lambda_{2}-\lambda_{3}\right)-\left(\lambda_{2}-\lambda_{3}\right)\right]} . \tag{4.1.43}
\end{equation*}
$$

The values for the constants for the optical region for typical optical glasses are:

$$
\begin{array}{lll}
A & B & C
\end{array}
$$

$\begin{array}{llll}\text { Crown glass } & 1.477 \quad 3.2 \times 10^{-8} & -2.1 \times 10^{-7}\end{array}$

| Dense flint glass | 1.603 | 2.08×10^{-8} |
| :--- | :--- | :--- | $.43 \times 10^{-7}$

$$
\mu_{\lambda}=A+\frac{B}{\lambda-C} \quad \text { Prisms uses apex } \alpha=60^{\circ}
$$

$$
\theta=\sin ^{-1}\left(\mu_{\lambda} \sin r_{1}\right)+\sin ^{-1}\left[\mu_{\lambda} \sin \left(\alpha-r_{1}\right)\right]-\alpha
$$

$$
r_{1}=\alpha / 2
$$

$$
1.39 \times 10^{\prime \circ} \mathrm{m}^{-1}
$$

dispersion of a prism increases rapidly towards shorter λ

Spectrograph based on prism

Prism

Figure 4.1.12. Basic optical arrangement of a prism spectroscope.

Objective prism spectrograph

Figure 4.2.6. An objective prism spectroscope.

Classic application of prism spectrographs: spectral classification

Stellar classification

 strong H lines. Current
Type II: yellow, tipo solare.

 Numerous metallic lines ($\mathrm{Na}, \mathrm{Ca}, \mathrm{Fe}$), with weaker H. Current class G, K, late F Stellar Spectra (1860-1870)Secchi's four classes of stellar spectra, from a colored lithograph in a book published around 1870. The principal spectral lines are identified underneath by letters that Fraunhofer assigned.

Type IV: stars with emission lines

Type I: white-blue; class A \& early F

Fig.1. (1stype: Sirius, Vega, Altaï, Regulus, etc.)

Fig. 2. (2 ${ }^{\text {rd }}$ type. Sun , Pollux, Arcturus, Procyon, etc.)

Fig. 3. (3 ${ }^{\text {r.d }}$ type: a Hercules, β Pegasus, a of Orion, Antares, elc.)

Pig. 4. ($4^{\text {th/ }}$ lype: $15:$ of Sclyellerap.,

The Harvard classification system

- 1890-1900s: Harvard classification (E.Pickering + Williamina Fleming + Antonia Maury + Annie J. Cannon):

O, B, A, F, G, K, M

Women astronomers @ Harvard

Stellar

classification:

O, B, A, F, G, K, M
Based on spectra taken at the Harvard North (USA) \& South (Arequipa, Peru) stations Annie J. Cannon classified > 250000 spectra!

The Henry Draper (HD) catalogue

Ultimately listed over 400000 stars. It is stil very useful; the most common ID of stars with $\mathrm{V}<9$ is its HD number (also HIP)

Harvard plate

 taken with objective prism spectrograph in

Arequipa. Field of η Carinae. E Dorrit Hoffleit on May 13, 1893, with the 8 -inch Bache telescope covering 8×10 degrees in the sky. Field of η Carinae, 2002, Phys. Perspect., 4, 370

Luminosity class

Antonia Maury : hired in 1888 by E. Pickering (Harvard) to classify spectra. She proposed a new system considering also the width of
 Pickering. the lines, but was ignored

Dwarf and Supergiant sprectra in comparison

Note wide and diffuse hydrogen and calcium lines in normal stars atmosphere, against the extreme sharpness of the same lines in the supergiant atmosphere.

