AGA5802

CCDs, data reduction, noise

- To Measure the Sky
- Handbook of CCD astronomy
- Introduction to CCDs:
astro.kent.ac.uk/~df/teaching/ph507/tel_4.pdf

Prof. Jorge Meléndez

Handhook of CED Astronomy
Steve B. Howell

CCDs: size\$

- Typically (old: 256x256, 512x512 pixels), 1024 x 1024, 2048x2048, 4096×4096
Pixels of $\sim 10-20 \mu \mathrm{~m}$
- One of the largest is CCD231-C6 da E2V:
6144×6144 pixels
The pixels are $15 \mu \mathrm{~m}$ in size
Total size: $92.16 \mathrm{~mm} \times 92.40 \mathrm{~mm}$

CCD Heritage : Large Area Thinned

Teledyne $\triangle 2$

We have extensive experience in the design and manufacture of large area back illuminated CCDS :

CCD 42-90: $13.5 \mu \mathrm{~m}$ pixel, $\left.2 \mathrm{kx} \mathrm{4.5k}: \begin{array}{l}\text { General astronomy } \\ \text { CCD44-82 : } 15 \mu \mathrm{~m} \text { pixel, } 2 \mathrm{kx} \mathrm{4k} \\ \text { CCD43-62 : } 15 \mu \mathrm{~m} \text { pixel, } 4 \mathrm{k} \times 2 \mathrm{k} \\ \text { General astronomy }\end{array}\right\}>400$ of these two
types supplied And now the very large area

CCD231-68: $15 \mu \mathrm{~m}$ pixel	8k x 3k	LBT Multi-Object Double Spectrograph
CCD231- C6 : $15 \mu \mathrm{~m}$ pixel	6 kx 6 k	Next generation astronomy imager
CCD290-99: 10رm pixel	9k x 9k	Next generation astronomy imager

LMI (Large

 Monolithic Imager) of Discovery Channel Telescope ($4,3 \mathrm{~m}$) at Lowell Observatory

NGC 891 is an edge-on spiral galaxy, located about 10 Mpc (32 million lightyears) away. The exposure was unguided and consist of ten 1-min exposures in B, five 1-minute exposures in V, and six 1-minute exposures in R. This was the "first-light" image obtained with LMI obtained on September 12, 2012. The field of view shown is $\mathbf{1 1 . 7}$ arcminutes on a side.
Total field of view of CCD is about $13^{\prime} \times 13^{\prime}$

Ground-based CCD mosaic CCD44-82 \& CCD42-90

Teledyne $2 \mathbf{2 V}$

Kepler planet hunter

Teledyne
 e2v

Image supplied courtesy of Ball Aerospace
(c) e 2 V
e2v supplied the CCDs for the Kepler instrument, which will greatly extend the search for extraterrestrial planets
Mosaic of 42 1024×2048 CCDs

FOV about 12°
diameter, but each pixel has ~ 4 arcsec

GAIA: 106 CCDs from Teledyne e2V

ESA's GAIA mission had the largest focal

LSST: Large Synoptic Survey Telescope, 2023?

189 CCDs (4096x4097 pixels)

 FOV 3.5° diameterAcknowledgements to LSST

$$
\begin{aligned}
& \text { The } 63 \mathrm{~cm} \text { diameter } \\
& \text { focal plane has } 189 \\
& \text { CCD's arranged on } 21 \\
& \text { modular rafts }
\end{aligned}
$$

From AAS Jan 2008
8-m telescope
(c) e 2 V

6-band (0.3-1.1 micron) wide-field deep astronomical survey of over 20,000 square degrees. Each patch of sky will be visited about 1000 times in ten years. 3200 Megapixels -- 9.6 square degree field of view -- 30 terabytes per night

STA also produces huge chips

http://www.sta-inc.net/

STA

Overwhelmingly Large CCDs

An overview of STA's developed technologies

Overwhelmingly Large CCDs
Our presentation from the 2009 Detectors for
Astronomy conference has been posted under
Applications
See it here. \rightarrow

Update of the STA1600 10560 x 10560 high-resolution CCD Our presentation from the 2010 SPIE Astronomical
Telescopes and Instrumentation conference
summarizing the features of the STA1 600.

AST3 Cameras Status Update Our presentation from the 2010 Astronomy \& Astrophysics in Antarctica conference describing the cameras we're building for AST3.

See it here. \rightarrow

- 10560×10560

STA1600

http://www.sta-inc.net/product-1/

- 9 um pixel CCD
- $95.2 \times 95.1 \mathrm{~mm}$

USNO Robotic Astrometric Telescope URAT

- 8 inch Refracting Telescope for Astrometry
- Upgrade initiated to a 2×2 array by Dr Norbert Zacharias for an all sky survey - URAT
- STA is providing complete system including
- Dewar - Window - Bonn Shutter
- Four BI STA1600B CCDs - Three STA 3000 Guiders
- Five Aura cameras with software
- Telescope robotic control software

Large Focal Plane Efficiency

E2V CCD231 adjacent to STA1600

- Four 10 ks provide more active image area than nine 4 k imagers
- 91% Active area for 4 k imager
- 95% Active area for 10 k imager

CCD reading

Fig. 2.1. CCDs can be likened to an array of buckets that are placed in a field and collect water during a rainstorm. After the storm, each bucket is moved along conveyor belts until it reaches a metering station. The water collected in each field bucket is then emptied into the metering bucket within which it can be measured. From Janesick \& Blouke (1987).

Transfer efficiency

- Early values about 0,999 (99,9\%).

For 200 transfers (100x100 array) :

$100 \times 0.999^{200}=81 \%$

- Modern values (year 2000), charge transfer efficiency ~0,999 999

Quantum efficiency (Q.E.)

Q.E. =
number of detected photons
number of incident photons
Quantum efficiency - CCD 105 (OPD)

http://www.Ina.br/opd/instrum/ccd/qefull_105_160.html

Quantum efficiency

Measured ITL QE Curves

M. Lesser, University of Arizona Imaging Technology Laboratory

- A and B are blue optimized coatings.
- C and D are broadband. D is a new AR coating
- E is a device with a red optimized coating.

Bias

- A bias frame is an exposure of zero duration taken with the camera shutter closed and all lights off
- "zero point" of reading
- Get at least 5-10 bias and combine using the median
- Problem: variations during the observing run?

Bias \& overscan

- Mean value of the bias could also be obtained from the overscan region of the CCD
- If you forgot to observe bias frames
\rightarrow bias $=$ median(overscan)
- If there are changes in the bias, you can use the overscan region to correct for those changes.

Flat

Image to correct differences in the sensibility of the CCD. Observe at least 5-10 flats.

Dark (current)

- Dark current is due to random counts from the thermal effect. Is negligible in cooled CCDs
- Could be important only for very weak objects
- Should be exactly of the same observing time as in your object, or scale with time:
Δ Dark/time $=($ Dark - bias $) /$ time

Dark current of a TEK1024 CCD

If the object is very faint, perhaps you should get "dark frames" of the same exposure time as the "science frame". In this case, "bias frames" are not needed, as the "dark frame" includes bias counts + accumulated

Dark Frame
"dark" includes the bias level

Flat Field Image

For modern CCDs cooled to low temperatures, the Science Frame dark current is very low, and therefore we could

Readout noise

noise and readout speed for an EEV4280 CCD

Time spent measuring each pixel (microseconds)

Noise in a CCD image

$\mathrm{NOISE}_{\text {total }}=\sqrt{(\text { READ NOISE })^{2}+(\text { PHOTON NOISE })^{2}+(\text { DARK CURRENT })^{2}}$

Per "frame"

Sqrt(e-)

Can be lowered cooling the detector (CCD: liquid nitrogen or thermoelectric cooling; Infrared detectors: liquid nitrogen or helium)

Resfriamento via liquid nitrogen (\$) or Thermoelectric cooling

Figure 1. IMustration of a Thermoelectric Module [1].

Linearity

Count vs. e-: GAIN

- Gain is reported in terms of electrons/ADU (analog-to-digital unit)
- Gain $=8$ means each "count" $=8$ e-
- 8e-/ADU
- In statistics (e.g. photon noise) you must use the number of e - and not the counts (ADU)

Figure 1. IMustration of a Thermoelectric Module [1].

$\begin{aligned} & 1,6 m \\ & 22 / 5 / 22 \end{aligned}$	CCD IKON L 9867			Single Pixel Noise (e- RMS)	Base Mean Level (ADUs)
	AD Rate MHz - all 16 bit	Preamp setting	CCD sensitivity eper A / D count		
No DS9,	5.0	x 1	6.1	56.3	2196
display	5.0	$\times 2$	3.3	35.0	3340
fits	5.0	x 4	1.8	29.7	4983
header:	3.0	x 1	3.7	26.6	1335
	3.0	x 2	2.0	16.6	1756
GAIN 3.7	3.0	x 4	1.0	12.2	2094
	1.0	x 1	3.5	9.2	930
RDNOISE	1.0	$\times 2$	1.9	7.7	909
26.6	1.0	x 4	1.0	6.3	839
Saturação =	0.05	$\times 1$	3.5	3.9	873
78041e- /	0.05	x2	1.9	3.3	852
$3.7=21092$	0.05	x 4	1.0	3.1	813
counts	Saturation Signal per pixel			78041 electrons	

Zeiss CCD IKON 23777
22/5/22

No DS9, display fits header:

GAIN 5.2
RDNOISE
24.4

Saturação = 149122e- / $5.2=28677$ counts

Poisson distribution (of variable x)

 Describes distribution in counting experiments μ : average rate (e.g., \#contagens/s)

For example, if you hear average of 2.8 drops of rain/second, probability $\mathrm{P}(\mathrm{x}, 2.8)$
© To measure the sky

Poisson distribution (of variable x)

 Describes distribution in counting experiments μ : average rate (e.g., \#contagens/s)

For example, if you hear average of 2.8 drops of rain/second, probability $\mathrm{P}(\mathrm{x}, 2.8)$
© To measure the sky

Signal, noise \& background

Is it possible to detect a signal weaker than the sky

Flux

 background?

Noise

Background

For a detection, the signal >> noise, meaning $\mathrm{S} / \mathrm{N} \gg 1$

Signal-to-noise ratio (S/N)

 $\mathrm{S} / \mathrm{N}=2$: tentative detectionS/N >> 1

Background

Fig. 3.27. Two extreme examples of noise. In the left-hand diagram, the signal is very weak compared to the background, but is easily detected because the signal-to-noise ratio is large: $S \ll B$ but $S / N \gg 1$. In the right-hand diagram, the signal is comparable in intensity to the background, but its very existence is in doubt because the signal-to-noise ratio is of order one: $S \simeq B$ but $S / N \simeq 1$.
© Robert Smith, Observational Astrophysics

Measurement, signal, background

Position

$$
S=M-B
$$

Source + background

Fig. 3.28. The measured signal always includes the background. The vertical dashed lines in the upper diagram, and the circles in the lower diagram, represent the aperture through which the measurements are made (see text).
© Robert Smith, Observational Astrophysics

Measurement, signal, background, noise

- $S=M-B$
- $\sigma_{S}^{2}=\sigma_{M}^{2}+\sigma_{B}^{2}$
- Neglecting readout noise \& dark current:

S/N = <S>/noise = <S>/sqrt($\sigma_{\mathrm{S}}{ }^{2}$)
$S / N=(\langle M\rangle-\langle B\rangle) / \operatorname{sqrt}\left(\sigma_{M}{ }^{2}+\sigma_{B}{ }^{2}\right)$

Measurement, signal, background, noise - $S=M-B$

- $\sigma_{S}^{2}=\sigma_{M}^{2}+\sigma_{B}^{2}$
- Neglecting readout noise \& dark current:
$\mathrm{S} / \mathrm{N}=\langle\mathrm{S}\rangle /$ noise $=\left\langle\mathrm{S}>/\right.$ sqrt $\left(\sigma_{\mathrm{s}}{ }^{2}\right)$
$S / N=(\langle M\rangle-<B\rangle) / \operatorname{sqrt}\left(\sigma_{M}{ }^{2}+\sigma_{B}{ }^{2}\right)$
$S / N=(<M>-) / \operatorname{sqrt}(M+B)$

Measurement, signal, background, noise - $S=M-B, \quad \sigma_{S}{ }^{2}=\sigma_{M}{ }^{2}+\sigma_{B}{ }^{2}$
$S / N=(<M>-) / \operatorname{sqrt}(M+B)$
If B ~ 0 (e.g., low sky emission):
S/N ~ <M>/sqrt(M)
S/N = sqrt(M)
Example, $\mathrm{M}=10000 \mathrm{e}-, \rightarrow \mathrm{S} / \mathrm{N}=100$

Slides from previous years

GAIA DR2 party 25/4/2018

GAIA DR2

G magnitudes for 1.7 billion sources, colors for 1.4 billion. Positions, parallaxes, proper motions for 1.3 billion stars. $\mathrm{T}_{\text {eff }}$ for 161 million, Radial velocities for 7.2 million stars

Release 25/April/2018. More than 60 papers in 4 weeks!

Natalie Gosnell @Nattie_G_ • 25 de abr
A quick trip into the \#GaiaDR2 data, chasing my favorite open cluster, NGC 188.
Here are all $\sim 37 \mathrm{k}$ sources within 1 deg of NGC 188 . The main sequence is visible, but can we do better?

Natalie Gosnell @Nattie_G_ • 25 de abr
Let's look at the proper motions! The overdensity around $-2.25 \mathrm{RA},-1.0 \mathrm{Dec}$ is the cluster! What happens if we make a quick cut around that overdensity?
**drum roll"*
6 Traduzir Tweet

THE CLUSTER CMD POPS OUT JUST
LIKE THAT! Folks. This used to take YEARS of painstaking proper motion analysis. YEARS! And my blue stragglers are there!!! THIS IS SO COOL!!! ${ }^{+}+$\#GaiaDR2

Gaussian (or normal) distribution

 Seems to describe the distribution of very large number of different experiments

$$
P_{\mathrm{G}}(x, \mu, \sigma) \mathrm{d} x=\frac{\mathrm{d} x}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]
$$

Is a continuous distribution
σ is independent of μ
$\mathrm{FWHM}_{\text {Gaussian }}=2.354 \sigma$ distribution with a mean of 5 and a standard deviation of 2.1. The curve
© To measure the sky

Standard normal distribution

$\pm 1 \sigma: 68,27 \%$ $\pm 2 \sigma: 95,45 \%$ $\pm 3 \sigma: 99,73 \%$

3σ
2σ
σ
σ
σ_{0}
2σ
3σ

XO-2N : 5307, 4.3, 0.409, 0.93 [iris]

Each Fe measurement has an an error (Poisson distribution)

