Cap. 10. Interiores Estelares

- 10.1 Equilíbrio Hidrostático
- 10.2 Equação de estado da Pressão
- 10.3 Fontes de energia

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + e^{+} + \nu_{e}$$

$${}_{1}^{2}H + {}_{1}^{1}H \rightarrow {}_{2}^{3}He + \gamma$$

$${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + 2 {}_{1}^{1}H.$$

- 10.4 Transporte de energia: Radiação
- 10.4 Transporte de energia: Convecção
- 10.5 Modelos estelares
- 10.6 A Sequência Principal

Sunspot Granulation

Prominence

Spicules

Core

Radiation
Zone

AGA 0293, Astrofísica Estelar, IAG-USP Jorge Meléndez

10.3 Fontes de energia estelar

Spoiler:

Energia potencial por contração gravitacional:

$$t_{
m KH} = rac{\Delta E_g}{L_\odot} \sim 10^7 \, {
m anos} \, rac{t_{
m KH} \,
m \'e}{
m Kelvin-Helmholtz}$$

Energia por
$$t_{\text{nuclear}} = \frac{E_{\text{nuclear}}}{L_{\odot}}$$

 $t_{\rm nuclear} = \frac{1}{L_{\odot}} \sim 10^{10} \, and s$

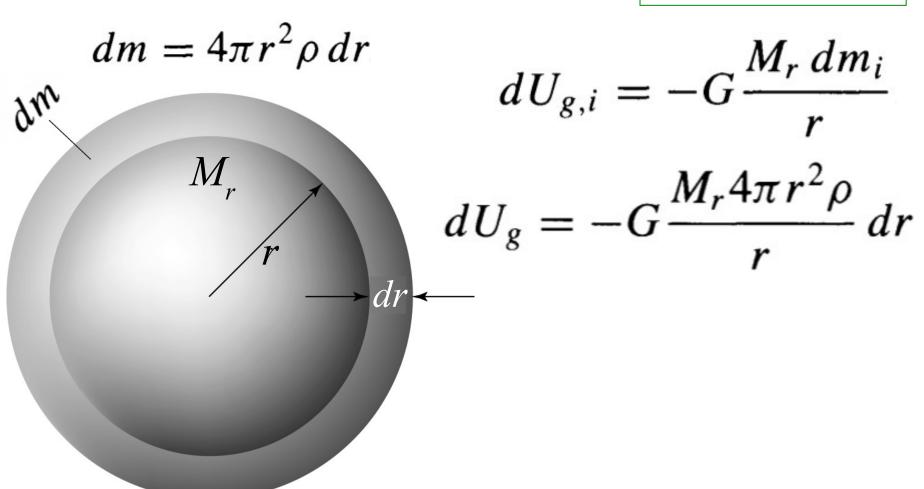
Idade do Sistema Solar (4,6 x 10⁹ anos)

Energia potencial gravitacional de sistema de 2 partículas (Cap. 2):

$$U = -G\frac{Mm}{r}$$

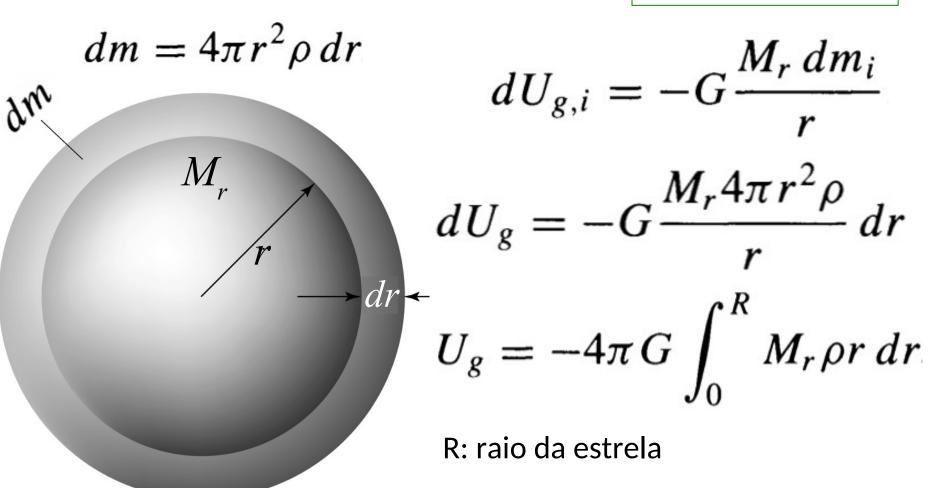
Energia potencial gravitacional de sistema de 2 partículas (Cap. 2):

$$U = -G\frac{Mm}{r}$$



Energia potencial gravitacional de sistema de 2 partículas (Cap. 2):

$$U = -G\frac{Mm}{r}$$



$$U_g = -4\pi G \int_0^R M_r \rho r \, dr$$
 Para integrar precisamos M_r ou ρ_r

Em 1a aproximação, considerar uma densidade média:

$$\rho \sim \overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3} \quad \Rightarrow \quad M_r \sim \frac{4}{3}\pi r^3 \overline{\rho}$$

$$U_g = -4\pi G \int_0^R M_r \rho r \, dr$$
 Para integrar precisamos M_r ou ρ_r

Em 1a aproximação, considerar uma densidade média:

$$\rho \sim \overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3} \quad \Rightarrow \quad M_r \sim \frac{4}{3}\pi r^3 \overline{\rho}$$

$$U_g = -4\pi G \int_0^R \frac{4}{3}\pi r^3 \overline{\rho} \, \overline{\rho} \, r \, dr = -\frac{16\pi^2}{3} G \overline{\rho}^2 \int_0^R r^4 dr$$

$$U_g = -4\pi G \int_0^R M_r \rho r \, dr$$
 Para integrar precisamos M_r ou ρ_r

Em 1a aproximação, considerar uma densidade média:

$$\rho \sim \overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3} \quad \Rightarrow \quad M_r \sim \frac{4}{3}\pi r^3 \overline{\rho}$$

$$U_g = -4\pi G \int_0^R \frac{4}{3}\pi r^3 \overline{\rho} \, \overline{\rho} \, r \, dr = -\frac{16\pi^2}{3} G \overline{\rho}^2 \int_0^R r^4 dr$$

$$U_g \sim -\frac{16\pi^2}{15} G\overline{\rho}^2 R^5 \sim -\frac{3}{5} \frac{GM^2}{R}$$

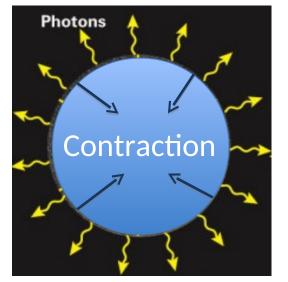
$$U_g = -4\pi G \int_0^R M_r \rho r \, dr$$

Considerando densidade
$$\rho \sim \overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3}$$
 média:

$$U_g \sim -\frac{3}{5} \frac{GM^2}{R}$$

$$-2 \langle K \rangle = \langle U \rangle$$
 Cap. 2, teorema $\langle E \rangle = \langle K \rangle + \langle U \rangle$ do virial $(E = \frac{1}{2} U)$ $\langle E \rangle = \frac{1}{2} \langle U \rangle$

$$\langle E \rangle = \frac{1}{2} \langle U \rangle$$



→ energia disponível para irradiar pela contração da estrela:

$$E \sim -\frac{3}{10} \frac{GM^2}{R}$$

Exemplo 10.3.1. Se o Sol foi inicialmente muito maior do que ele é hoje, quanta energia teria liberado seu colapso?

$$E \sim -\frac{3}{10} \frac{GM^2}{R}$$

Assumindo R_i >> R_{sol}:

$$\Delta E_g = -(E_f - E_i) \simeq -E_f \simeq \frac{3}{10} \frac{GM_{\odot}^2}{R_{\odot}} \simeq 1.1 \times 10^{41} \text{ J}.$$

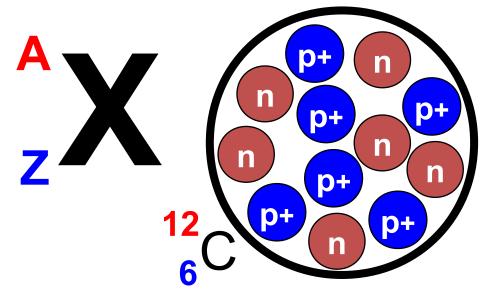
Supondo luminosidade aprox. constante para o Sol:

$$t_{
m KH} = rac{\Delta E_g}{L_\odot} \sim 10^7 \, {
m anos} \, rac{t_{
m KH} \,
m \'e}{
m Kelvin-Helmholtz}$$

 $t_{\kappa H}$ << idade do Sistema Solar (4,6 x 10 9 anos)

Representação do elemento químico X

A = Número de núcleons = Z + Nêutrons



Z: Número de Prótons

(número atômico)

A: Número de massa

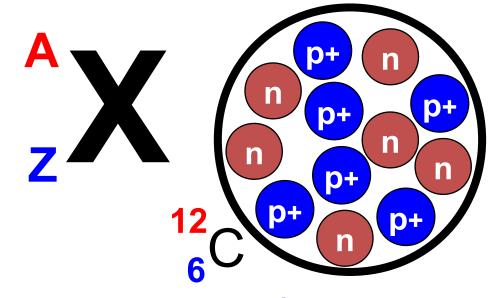
Representação do elemento químico X

A = Número de núcleons = Z + Nêutrons

Isótopo de um elemento químico:

igual número de prótons (Z) mas diferente número de nêutrons → diferente A.

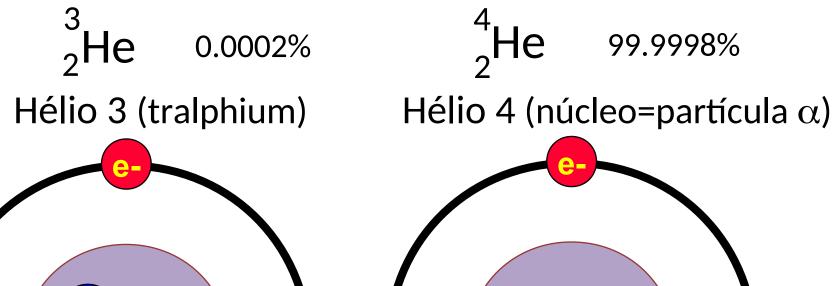
Exemplo: urânio (Z = 92) tem como isótopos mais abundantes o urânio-238 ²³⁸U e urânio-235 ²³⁵U ⁹²U

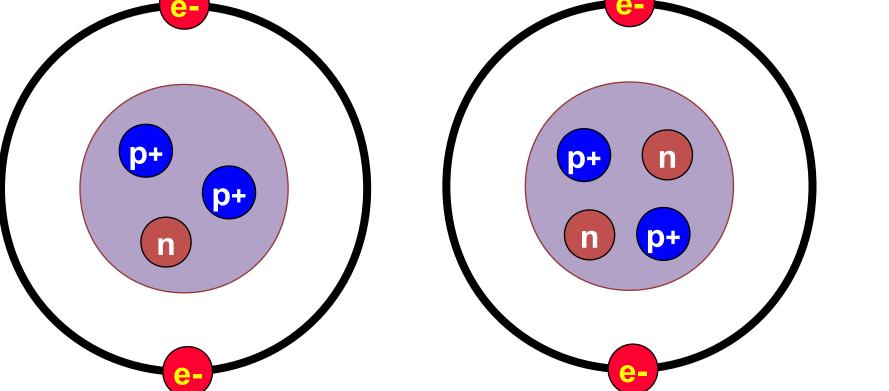


Z: Número de Prótons (número atômico)

A: Número de massa

Isótopos estáveis do hélio





Massa atômica

$$m_p = 1.67262158 \times 10^{-27} \text{ kg} = 1.00727646688 \text{ u}$$
 $m_n = 1.67492716 \times 10^{-27} \text{ kg} = 1.00866491578 \text{ u}$
 $m_e = 9.10938188 \times 10^{-31} \text{ kg} = 0.0005485799110 \text{ u}$

u: unidade de massa atômica (1/12 massa do carbono-12)

$$1 \text{ u} = 1.66053873 \times 10^{-27} \text{ kg}$$

$$E = mc^2 \rightarrow 1 \text{ u} = 931,494013 \text{ MeV}$$

Massa do átomo de hidrogênio m_H

$$m_p = 1.67262158 \times 10^{-27} \text{ kg} = 1.00727646688 \text{ u}$$

 $m_e = 9.10938188 \times 10^{-31} \text{ kg} = 0.0005485799110 \text{ u}.$

$$m_H = 1.00782503214 \,\mathrm{u}$$

A massa do átomo de hidrogênio é ligeiramente menor à soma das massas m_p e m_e!

A diferença é 13,6 eV, a energia de ionização!

$$m_H + 13,6 \text{ eV} = m_p + m_e$$

Fusão nuclear

 $4H \rightarrow He$

Massa de 4H: Massa de He:

4,03130013 u 4,02603 u

Δm: 0,028697 u (0,7%)

$$E_b = \Delta mc^2 = 26.731 \text{ MeV}$$

Exemplo 10.3.1. É a energia nuclear suficiente para manter o Sol brilhando durante seu tempo de vida?

Por simplicidade, supor que o Sol é 100% hidrogênio. Também, supor que somente 10% da massa mais interna do Sol é quente o suficiente para a fusão nuclear

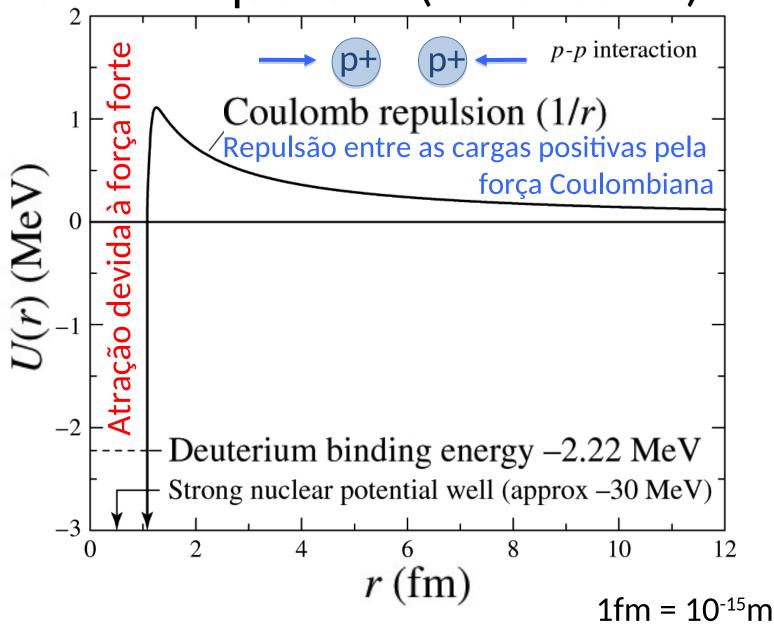
$$E_{\text{nuclear}} = 0.1 \times 0.007 \times M_{\odot}c^2 = 1.3 \times 10^{44} \text{ J}$$

 $\Delta m = 0.7\%$

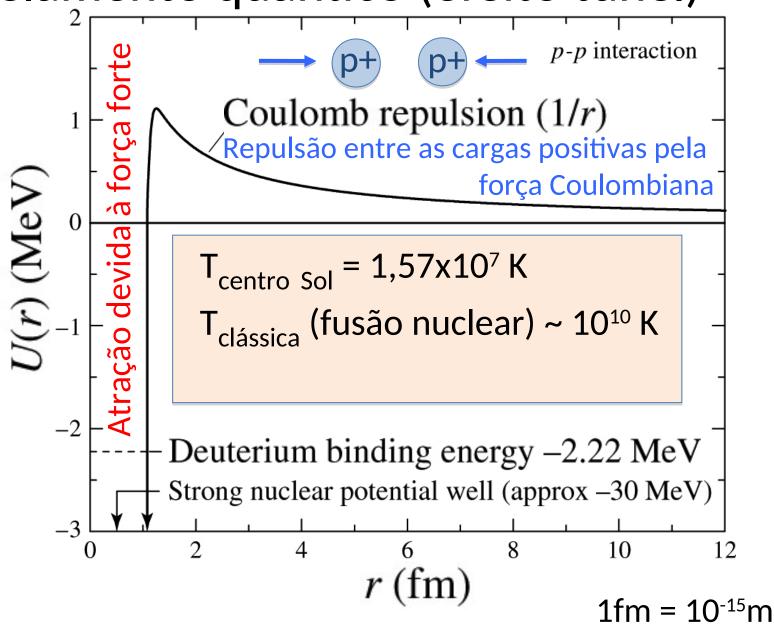
Escala de Tempo Nuclear:

$$t_{
m nuclear} = rac{E_{
m nuclear}}{L_{\odot}} \sim 10^{10} \,
m anos$$

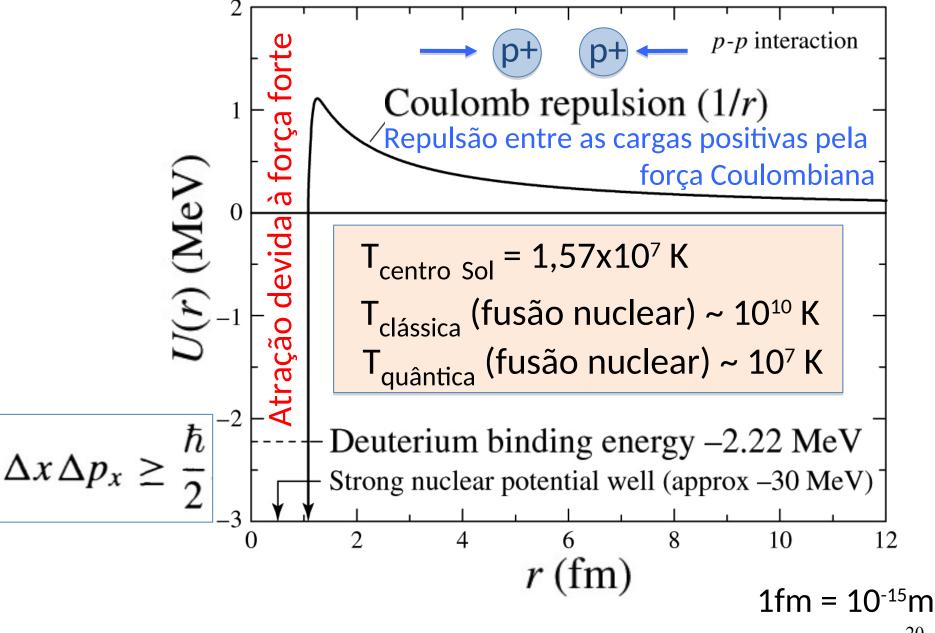
Tunelamento quântico (efeito túnel)



Tunelamento quântico (efeito túnel)



Tunelamento quântico (efeito túnel)



Estimando a temperatura T necessária para vencer a barreira de potencial:

 μ_m : massa

$$\frac{1}{2}\mu_m \overline{v^2} = \frac{3}{2} k T_{\text{classical}} = \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{r}$$

$$T_{\text{classical}} = \frac{Z_1 Z_2 e^2}{6\pi \epsilon_0 kr}$$

$$= \frac{Z_1 Z_2 e^2}{6\pi \epsilon_0 kr}$$
 $Z_1 = Z_2 = 1;$ raio núcleo ~ 1fm = 10⁻¹⁵m

$$T_{classica} \sim 10^{10} K$$

T_{clássica} é muito maior que a temperatura central do Sol $(T_{central} = 1,57 \times 10^7 \text{ K})$

Uma estimativa grosseira de T para o efeito túnel

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}$$

Rescrevendo a energia cinética em função do momento:

$$\frac{1}{2}\mu_m v^2 = \frac{p^2}{2\mu_m}$$

$$\frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{\lambda} = \frac{p^2}{2\mu_m} = \frac{(h/\lambda)^2}{2\mu_m}$$

Supor que próton deve estar dentro de $\lambda_{Broglie}$

Uma estimativa grosseira de T para o efeito túnel

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}$$

Supor que próton deve estar dentro de λ_{Broglie}

Rescrevendo a energia cinética em função do momento:

$$\frac{1}{2}\mu_m v^2 = \frac{p^2}{2\mu_m}$$

$$\frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{\lambda} = \frac{p^2}{2\mu_m} = \frac{(h/\lambda)^2}{2\mu_m}$$

Resolver λ e usar em:

$$T_{\text{classical}} = \frac{Z_1 Z_2 e^2}{6\pi \epsilon_0 kr}$$

Uma estimativa grosseira de T para o efeito túnel

$$\Delta x \Delta p_x \geq \frac{\hbar}{2}$$

Rescrevendo a energia cinética em função do momento:

$$\frac{1}{2}\mu_m v^2 = \frac{p^2}{2\mu_m}$$

$$\frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{\lambda} = \frac{p^2}{2\mu_m} = \frac{(h/\lambda)^2}{2\mu_m}$$

Resolver λ e Supor que próton deve estar dentro de λ_{Broglie}

$$T_{\text{classical}} = \frac{Z_1 Z_2 e^2}{6\pi \epsilon_0 kr}$$

$$T_{\text{quantum}} = \frac{Z_1^2 Z_2^2 e^4 \mu_m}{12\pi^2 \epsilon_0^2 h^2 k} \sim 10^7$$

$$\mu_m = m_p/2$$
 and $Z_1 = Z_2 = 1$

Número de reações nucleares (por unidade de volume e tempo):

$$r_{ix} = \left(\frac{2}{kT}\right)^{3/2} \frac{n_i n_x}{(\mu_m \pi)^{1/2}} \int_0^\infty S(E) \frac{e^{-bE^{-1/2}}}{e^{-E/kT}} dE$$

$$b \equiv \frac{\pi \mu_m^{1/2} Z_1 Z_2 e^2}{2^{1/2} \epsilon_0 h}$$

Probabilidade de penetração de barreira

Cauda de Maxwell-**Boltzmann**

i: partícula incidente

x: partícula alvo

n: número de

partículas/volume

S(E): função de E

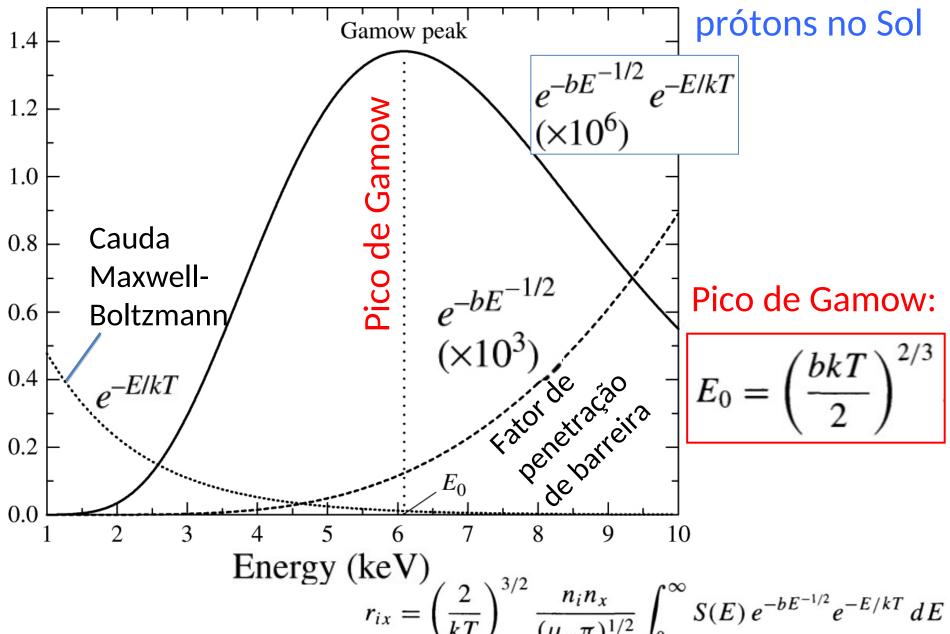
$$S(E) \simeq S(E_0) = \text{constant}$$

Essa função produz [Gamow:

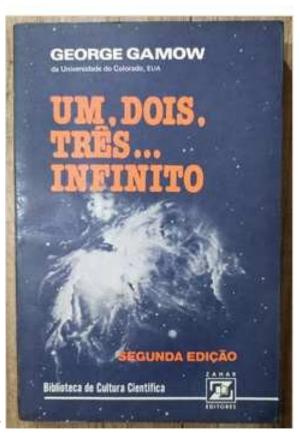
o chamado Pico de Gamow:
$$E_0 = \left(\frac{bkT}{2}\right)^{2/3}$$

$$K = E = \mu_m v^2 / 2$$

Probabilidade de reação nuclear pela colisão de 2



26



(c) Léo Ramos

George Gamow (Odessa/Ucrânia, 4/março/1904 -Boulder/EUA, 19/agosto/1968). Físico e divulgador científico ucraniano-americano

Profa. Dra. Beatriz Barbuy, Astrônoma no IAG-USP

https://revistapesquisa.fapesp.br/es/beatriz-barbuy-en-la-estela-de-las-estrellas-primigenias/

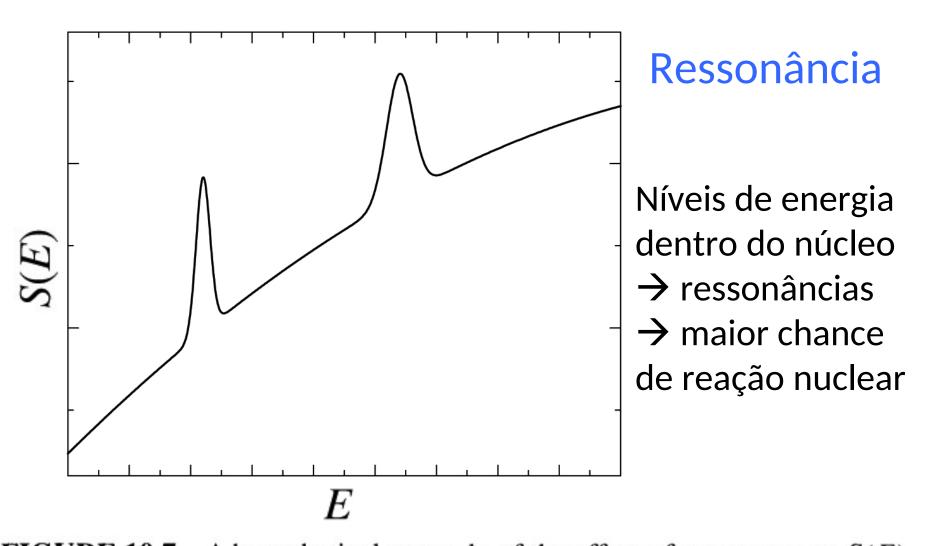


FIGURE 10.7 A hypothetical example of the effect of resonance on S(E).

$$r_{ix} = \left(\frac{2}{kT}\right)^{3/2} \frac{n_i n_x}{(\mu_m \pi)^{1/2}} \int_0^\infty S(E) e^{-bE^{-1/2}} e^{-E/kT} dE$$

Blindagem eletrônica

(electron screening)

$$U_{\text{eff}} = \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{r} + U_s(r)$$

 $U_s(r) < 0$

Nuvem de e- devido à ionização

reduz a barreira Coulombiana

Pode aumentar as reações que produzem He por 10% - 50%

Representando as taxas de reações nucleares

usando leis de potência

Desprezando a blindagem eletrônica:

$$r_{ix} \simeq r_0 X_i X_x \rho^{\alpha'} T^{\beta}$$

 r_0 : constante X_i , X_x : frações de massa das partículas $\alpha' \sim 2$ $\beta \sim 1 - 40$

r_{ix}: número total de reações por unidade de volume e tempo

Representando as taxas de reações nucleares

usando leis de potência

Desprezando a blindagem eletrônica:

$$r_{ix} \simeq r_0 X_i X_x \rho^{\alpha'} T^{\beta}$$

 r_0 : constante

 $\beta \sim 1 - 40$

 X_i , X_x : frações de massa das partículas α ' ~ 2

Se conhecemos a **energia liberada por reação** \mathcal{E}_0

→ a energia liberada por segundo em cada quilograma:

$$\epsilon_{ix} = \left(\frac{\mathcal{E}_0}{\rho}\right) r_{ix}$$

 ϵ_{ix} : unidades de W kg⁻¹

r_{ix}: número total de reações por unidade de volume e tempo

Representando as taxas de reações nucleares

usando leis de potência

Desprezando a blindagem eletrônica:

$$r_{ix} \simeq r_0 X_i X_x \rho^{\alpha'} T^{\beta}$$

 r_0 : constante

 X_i , X_x : frações de massa das partículas α ' ~ 2 β ~ 1 - 40

Se conhecemos a **energia liberada por reação** \mathcal{E}_0

→ a energia liberada por segundo em cada quilograma:

$$\epsilon_{ix} = \left(\frac{\mathcal{E}_0}{\rho}\right) r_{ix}$$
 $\rightarrow \epsilon_{ix} = \epsilon'_0 X_i X_x \rho^{\alpha} T^{\beta}$
Onde: $\alpha = \alpha' - 1$

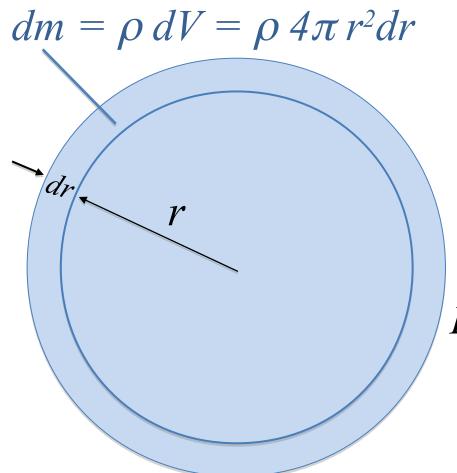
 ϵ_{ix} : unidades de W kg⁻¹

r_{ix}: número total de reações por unidade de volume e tempo

A equação do gradiente de luminosidade

 € : energia total liberada por todas as reações nucleares por quilograma (W kg⁻¹)

 \rightarrow uma massa dm contribui para a luminosidade em:



$$dL = \epsilon dm$$

$$\frac{dL_r}{dr} = 4\pi r^2 \rho \epsilon$$

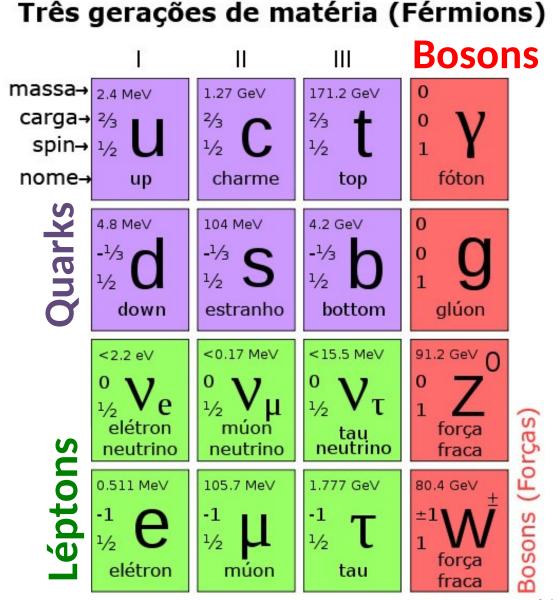
 L_r : luminosidade interior a r

Nucleossíntese estelar e Leis de conservação

Reações nucleares não acontecem arbitrariamente.

Conservação:

- Carga
- Número de núcleons (p + n)
- Número de léptons (e, v_e , e antipartículas)



Antimatéria

- Mistura da matéria e antimatéria aniquilamento.
- Colisão de uma partícula e antipartícula -> energia

Por exemplo, colisão de elétron e antielétron (pósitron) resulta em fótons de alta energia (radiação gama γ):

$$e^- + e^+ \rightarrow 2\gamma$$

Antimatéria

- Mistura da matéria e antimatéria aniquilamento.
- Colisão de uma partícula e antipartícula -> energia

Por exemplo, colisão de elétron e antielétron (pósitron) resulta em fótons de alta energia (radiação gama γ):

$$e^- + e^+ \rightarrow 2\gamma$$

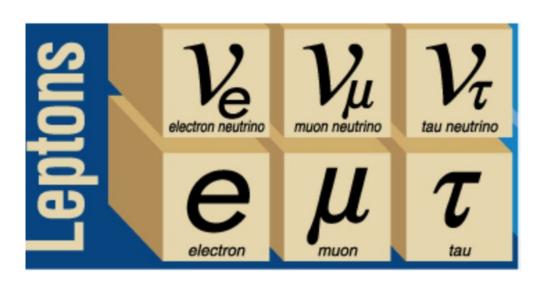
São necessários 2 fótons para a conservação da quantidade de movimento (momento)

Neutrinos ν

v quase não interage com a matéria

$$\sigma_{\nu} \sim 10^{-48} \text{ m}^2$$

a neutrino's mean free path is on the order of 10^{18} m ~ 10 pc, or nearly 10^{9} R_{\odot}!



A Z A: Número de massa (p + n)

Z : Número de p (carga positiva)

Cadeia próton-próton, PP-I Força fraca
$$p^+ \rightarrow n + e^+ + \nu_e$$
 ${}_1^1H + {}_1^1H \rightarrow {}_1^2H + e^+ + \nu_e$ ${}_2^2H + {}_1^1H \rightarrow {}_2^3He + \gamma$ ${}_2^3He + {}_2^3He \rightarrow {}_2^4He + 2 {}_1^1H$. 69%

A₇X

A: Número de massa (p + n)

Z : Número de p (carga positiva)

Cadeia próton-próton, PP-I Força fraca
$$p^+ \rightarrow n + e^+ + \nu_e$$
 $^1_1H + ^1_1H \rightarrow ^2_1H + e^+ + \nu_e$ $^2_1H + ^1_1H \rightarrow ^3_2He + \gamma$ $^3_2He + ^3_2He \rightarrow ^4_2He + 2 ^1_1H$. 69%

Em resumo: $4_{1}^{1}H \rightarrow {}_{2}^{4}He + 2e^{+} + 2\nu_{e} + 2\gamma$

Cadeia próton-próton, PP-II

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + e^{+} + \nu_{e}$$

$${}_{1}^{2}H + {}_{1}^{1}H \rightarrow {}_{2}^{3}He + \gamma$$

$${}_{2}^{3}\text{He} + {}_{2}^{4}\text{He} \rightarrow {}_{4}^{7}\text{Be} + \gamma$$

$$^{7}_{4}\mathrm{Be} + e^{-} \rightarrow ^{7}_{3}\mathrm{Li} + \nu_{e}$$

$$_{3}^{7}\text{Li} + _{1}^{1}\text{H} \rightarrow 2_{2}^{4}\text{He}.$$

PP-III

$${}^{7}_{4}\text{Be} + {}^{1}_{1}\text{H} \rightarrow {}^{8}_{5}\text{B} + \gamma$$
 ${}^{8}_{5}\text{B} \rightarrow {}^{8}_{4}\text{Be} + e^{+} + \nu_{e}$
 ${}^{8}_{4}\text{Be} \rightarrow 2 \, {}^{4}_{2}\text{He}.$

0,3%

31%

$${}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{2}_{1}H + e^{+} + \nu_{e}$$

$${}^{2}_{1}H + {}^{1}_{1}H \rightarrow {}^{3}_{2}He + \gamma$$

$${}^{3}_{2}He + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + 2 {}^{1}_{1}H$$

$${}^{3}_{2}He + {}^{4}_{2}He \rightarrow {}^{7}_{4}Be + \gamma$$

$${}^{7}_{4}Be + e^{-} \rightarrow {}^{7}_{3}Li + \nu_{e}$$

$${}^{7}_{3}Li + {}^{1}_{1}H \rightarrow 2 {}^{4}_{2}He$$

$${}^{8}_{5}B \rightarrow {}^{8}_{4}Be + e^{+} + \nu_{e}$$

$${}^{8}_{4}Be \rightarrow 2 {}^{4}_{2}He$$

Produção de energia por toda a cadeia PP

$$\epsilon_{pp} = 0.241 \rho X^2 f_{pp} \psi_{pp} C_{pp} T_6^{-2/3} e^{-33.80 T_6^{-1/3}} \text{ W kg}^{-1}$$

Termos de correção ~ 1 $T_6 = T/10^6 K$

Escrevendo como lei de potência para $T = 1,5x10^7 K$:

$$\epsilon_{pp} \simeq \epsilon'_{0,pp} \rho X^2 f_{pp} \psi_{pp} C_{pp} T_6^4$$

Onde: $\epsilon'_{0,pp} = 1.08 \times 10^{-12} \,\mathrm{W m^3 \, kg^{-2}}$

$${}^{12}_{6}C + {}^{1}_{1}H \rightarrow {}^{13}_{7}N + \gamma$$

$${}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu_{e}$$

$${}^{13}_{6}C + {}^{1}_{1}H \rightarrow {}^{14}_{7}N + \gamma$$

$${}^{14}_{7}N + {}^{1}_{1}H \rightarrow {}^{15}_{8}O + \gamma$$

$${}^{15}_{8}O \rightarrow {}^{15}_{7}N + e^{+} + \nu_{e}$$

O Ciclo CNO

0,04%

$$\begin{array}{c} ^{15}_{7}\mathrm{N} + ^{1}_{1}\mathrm{H} \rightarrow ^{12}_{6}\mathrm{C} + ^{4}_{2}\mathrm{He}. \\ \\ ^{99,96\%} \end{array}$$

$$\begin{array}{c} ^{15}_{7}\mathrm{N} + ^{1}_{1}\mathrm{H} \rightarrow ^{16}_{8}\mathrm{O} + \gamma \\ ^{16}_{8}\mathrm{O} + ^{1}_{1}\mathrm{H} \rightarrow ^{17}_{9}\mathrm{F} + \gamma \\ ^{17}_{9}\mathrm{F} \rightarrow ^{17}_{8}\mathrm{O} + e^{+} + \nu_{e} \\ \\ ^{17}_{8}\mathrm{O} + ^{1}_{1}\mathrm{H} \rightarrow ^{14}_{7}\mathrm{N} + ^{4}_{2}\mathrm{He}. \end{array}$$

Produção de energia pelo ciclo CNO

$$\epsilon_{\rm CNO} = 8.67 \times 10^{20} \rho X X_{\rm CNO} C_{\rm CNO} T_6^{-2/3} e^{-152.28 T_6^{-1/3}} ~\rm W ~kg^{-1}$$
 Fração de massa Termo de total CNO correção

Escrevendo como lei de potência para $T = 1,5x10^7 K$:

$$\epsilon_{\rm CNO} \simeq \epsilon'_{0,\rm CNO} \rho X X_{\rm CNO} T_6^{19.9}$$

Onde:
$$\epsilon'_{0,CNO} = 8.24 \times 10^{-31} \text{ W m}^3 \text{ kg}^{-2}$$

Dependência muito maior com a temperatura

Devido à conversão de H em He \rightarrow peso molecular médio μ aumenta

$$P_g = \frac{\rho kT}{\mu m_H} \Big|_{m_H = \frac{\overline{m}}{m_H}}$$

$$\frac{\rho kT}{\mu m_H}$$
 $\mu \equiv \frac{\overline{m}}{m_H}$ μ : peso molecular médio m_H : massa H $m_H = 1.673532499 \times 10^{-27} \, \mathrm{kg}$

Pressão diminui -> contração da estrela

→ aumento da T, que pode alcançar a T necessária para a queima do hélio

Processo triplo alfa (T ~ 10⁸ K)

$${}_{2}^{4}\text{He} + {}_{2}^{4}\text{He} \rightleftharpoons {}_{4}^{8}\text{Be}$$

 ${}_{4}^{8}\text{Be} + {}_{2}^{4}\text{He} \rightarrow {}_{6}^{12}\text{C} + \gamma$

$$\epsilon_{3\alpha} = 50.9 \rho^2 Y^3 T_8^{-3} f_{3\alpha} e^{-44.027 T_8^{-1}} \text{ W kg}^{-1}$$

$$T_8 = \text{T}/10^8 \text{K}$$
 Termo de blindagem

Escrevendo como lei de potência para T ~ 10^8 K: $\epsilon_{3\alpha} \simeq \epsilon'_{0,3\alpha} \rho^2 Y^3 f_{3\alpha} T_8^{41}$

Ultra sensível à temperatura: 10% aumento em T → 50 vezes na produção de energia

Queima de C e O

$$T \sim 10^8 \, \text{K}$$

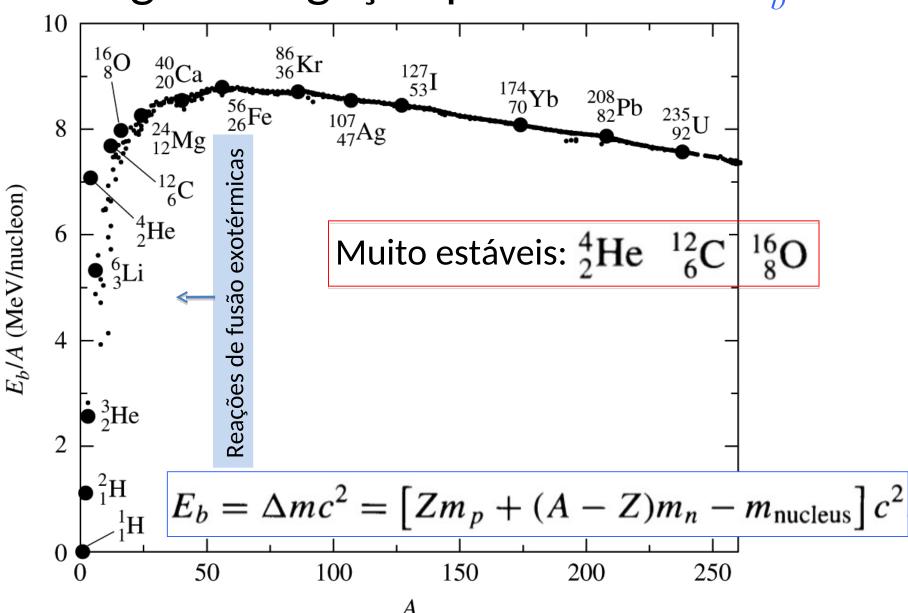
$${}^{12}_{6}\text{C} + {}^{4}_{2}\text{He} \rightarrow {}^{16}_{8}\text{O} + \gamma$$

$$^{16}_{8}O + {^4_2}He \rightarrow {^{20}_{10}}Ne + \gamma$$

$$\begin{vmatrix}
20 \\ 10 \\ Ne + {}^{4}_{2}He \\
\\
{}^{12}_{6}C + {}^{12}_{6}C \rightarrow
\end{vmatrix}
\begin{cases}
23 \\ 11 \\ Na + p^{+} \\
\\
{}^{23}_{12}Mg + n *** \\
\\
{}^{24}_{12}Mg + \gamma
\end{cases}$$

***: endotérmica

Energia de Ligação por Núcleon: E_h/A



120

Somos poeira de estrelas

$$4 {}_{1}^{1}H \rightarrow {}_{2}^{4}He + 2e^{+} + 2v_{e} + 2\gamma$$

$${}^{12}_{6}C + {}^{1}_{1}H \rightarrow {}^{13}_{7}N + \gamma$$

$${}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu_{e}$$

$${}^{13}_{6}C + {}^{1}_{1}H \rightarrow {}^{14}_{7}N + \gamma$$

$${}^{14}_{7}N + {}^{1}_{1}H \rightarrow {}^{15}_{8}O + \gamma$$

$${}^{15}_{8}O \rightarrow {}^{15}_{7}N + e^{+} + \nu_{e}$$

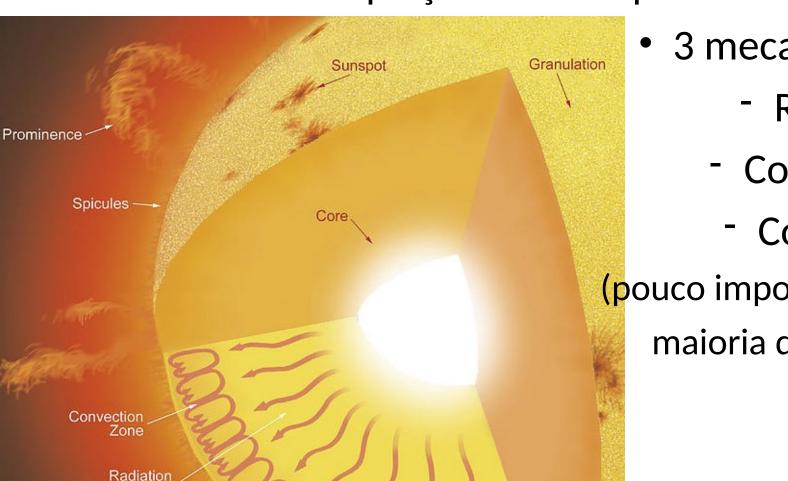
$${}^{15}_{7}N + {}^{1}_{1}H \rightarrow {}^{12}_{6}C + {}^{4}_{2}He.$$

 $\frac{16}{8}O + \frac{16}{8}O \rightarrow
\begin{cases}
\frac{24}{12}Mg + 2\frac{4}{2}He *** \\
\frac{28}{14}Si + \frac{4}{2}He \\
\frac{31}{15}P + p^{+} \\
\frac{31}{16}S + n \\
\frac{32}{16}S + \gamma
\end{cases}$

$$\int_{10}^{10} Ne + \gamma \begin{cases}
1_{6}^{16}O + 2_{2}^{4}He **** \\
2_{10}^{0}Ne + _{2}^{4}He \\
1_{10}^{20}Ne + _{2}^{4}He \\
2_{11}^{3}Na + p^{+} \\
2_{11}^{23}Mg + n **** \\
2_{12}^{4}Mg + \gamma \end{cases}$$
49

Transporte de energia

- Já temos 3 equações básicas (P_r, M_r, L_r) .
 - Falta equação do transporte de energia.



3 mecanismos:

Radiação

- Convecção

- Condução

(pouco importante na maioria dos casos)

$$P_{\text{rad}} = \frac{1}{3}aT^4 \Rightarrow \frac{dP_{\text{rad}}}{dr} = \frac{4}{3}aT^3\frac{dT}{dr}$$

$$P_{\text{rad}} = \frac{1}{3}aT^4 \rightarrow \frac{dP_{\text{rad}}}{dr} = \frac{4}{3}aT^3\frac{dT}{dr}$$
Cap. 9: $\frac{dP_{\text{rad}}}{dr} = -\frac{\overline{\kappa}\rho}{c}F_{\text{rad}}$

$$P_{\text{rad}} = \frac{1}{3}aT^4 \Rightarrow \frac{dP_{\text{rad}}}{dr} = \frac{4}{3}aT^3\frac{dT}{dr}$$
Cap. 9: $\frac{dP_{\text{rad}}}{dr} = -\frac{\overline{\kappa}\rho}{c}F_{\text{rad}}$

$$P_{\text{rad}} = \frac{1}{3}aT^4 \Rightarrow \frac{dP_{\text{rad}}}{dr} = \frac{4}{3}aT^3\frac{dT}{dr}$$
Cap. 9: $\frac{dP_{\text{rad}}}{dr} = -\frac{\overline{\kappa}\rho}{c}F_{\text{rad}}$

Lembrando:

$$F_{\rm rad} = \frac{L_r}{4\pi r^2} \rightarrow \frac{dT}{dr} = -\frac{3}{4ac} \frac{\overline{\kappa}\rho}{T^3} \frac{L_r}{4\pi r^2}$$

$$P_{\text{rad}} = \frac{1}{3}aT^4 \Rightarrow \frac{dP_{\text{rad}}}{dr} = \frac{4}{3}aT^3\frac{dT}{dr}$$
Cap. 9: $\frac{dP_{\text{rad}}}{dr} = -\frac{\overline{\kappa}\rho}{c}F_{\text{rad}}$

Lembrando:

$$F_{\text{rad}} = \frac{L_r}{4\pi r^2} \rightarrow \frac{dT}{dr} = -\frac{3}{4ac} \frac{\overline{\kappa}\rho}{T^3} \frac{L_r}{4\pi r^2}$$