Cap. 8: Classificação de espectros estelares

- 8.1 A formação de linhas espectrais
- Classificação espectral
- Distrib. Velocidades: Maxwell-Boltzmann
- A equação de Boltzmann: $e^{-E_{nivel}/kT}$
- A equação de Saha: $e^{-E_{ion}/kT}$

8.2 O diagrama HR

AGA 0293, IAG/USP

Slides based on the book "An Introduction to Modern Astrophysics", unless otherwise noticed.

Prof. Jorge Meléndez

Ex. 8.1.3. Qual a temperatura necessária para termos o mesmo numero de átomos com o elétron no estado base (n = 1) e no primeiro estado excitado (n = 2) ?

Para hidrogênio, g = 2n²

$$\frac{N_b}{N_a} = \frac{g_b}{g_a} e^{-(E_b - E_a)/kT} = 1$$

 $E_n = -13.6 \frac{1}{n^2} e^V$
 $1 = \frac{2(2)^2}{2(1)^2} e^{-[(-13.6 eV/2^2) - (-13.6 eV/1^2)]/kT}$
 $\rightarrow T = 85400 \text{ K}$
 $H\beta$
 $H\beta$
 $H\beta$
 $n=1$
 $n=2$
 $n=3$

FIGURE 8.7 $N_2/(N_1 + N_2)$ for the hydrogen atom obtained via the Boltzmann equation

Ionização: Notação

- Hidrogênio neutro: H, H⁰ ou H I
- Hidrogênio ionizado: H⁺ ou H II
- Ferro neutro: Fe, Fe⁰ ou Fe I
- Ferro ionizado: Fe⁺ ou Fe II
- Ferro três vezes ionizado: Fe³⁺, Fe IV

Populações:

- •N_n: elétron no nível de excitação n
- • N_{II} : neutro; N_{II} : ionizado, N_{III} : 2 vezes ionizado
- • N_n^{III} : nível de excitação *n*, 2 vezes ionizado

Energias de ionização

Table D.1. Atomic weights and ionization potentials.

No.	Element	Symbol	Weight	I ₁	I ₂	I_3
1	Hydrogen	Н	1.008	13.598	_31.55	_
2	Helium	He	4.003	24.587	54.418	_ 1
3	Lithium	Li	6.941	5.392	75.640	122.454
4	Beryllium	Be	9.012	9.323	18.211	153.897
5	Boron	В	10.811	8.298	25.155	37.931
6	Carbon	С	12.011	11.260	24.383	47.888
7	Nitrogen	N	14.007	14.543	29.601	47.449
8	Oxygen	0	15.994	13.618	35.117	54.936
9	Fluorine	F	18.998	17.423	34.971	62.708
10	Neon	Ne	20.179	21.565	40.963	63.45
11	Sodium	Na	22.990	5.139	47.286	71.620
12	Magnesium	Mg	24.305	7.646	15.035	80.144
13	Aluminum	Al	26.982	5.986	18.829	28.448
14	Silicon	Si	28.086	8.152	16.346	33.493
15	Phosphorus	Р	30.974	10.487	19.769	30.203
16	Sulfur	S	32.06	10.360	23.338	34.79
17	Chlorine	Cl	35.45	12.968	23.814	39.61
18	Argon	Ar	39.95	15.760	27.63	40.74
19	Potassium	K	39.10	4.341	31.63	45.806
20	Calcium	Ca	40.08	6.113	11.872	50.913

D. Gray, Stellar Photospheres, 3rd Ed.

21	Scandium	Sc	44.96	6.561	12.800	24.757
22	Titanium	Ti	47.90	6.828	13.578	27.492
23	Vanadium	V	50.941	6.746	14.66	29.311
No.	Element	Symbol	Weight	I ₁	I_2	I ₃
24	Chromium	Cr	51.996	6.767	16.486	30.96
25	Magnesium	Mn	54.938	7.434	15.640	33.668
26	Iron	Fe	55.847	7.902	16.188	30.652
27	Cobalt	Co	58.933	7.881	17.083	33.50
28	Nickel	Ni	58.71	7.640	18.169	35.19
29	Copper	Cu	63.646	7.726	20.292	36.841
30	Zinc	Zn	65.37	9.394	17.964	39.723
31	Gallium	Ga	69.72	5.999	20.514	30.71
32	Germanium	Ge	72.59	7.900	15.935	34.224
33	Arsenic	As	74.922	9.815	18.633	28.351
34	Selenium	Se	78.96	9.752	21.19	30.820
35	Bromine	Br	79.904	11.814	21.8	36
36	Krypton	Kr	83.80	14.000	24.360	36.95
37	Rubidium	Rb	85.468	4.177	27.285	40
38	Strontium	Sr	87.62	5.695	11.030	42.89
39	Yttrium	Y	88.906	6.217	12.24	20.52
40	Zirconium	Zr	91.22	6.634	13.13	22.99

Função de partição Z_i

É a soma pesada das diferentes maneiras como um átomo com estado de ionização *i*, pode arranjar seus elétrons da mesma energia E_j (peso estatístico g_j) do nível de energia *j*. Pelo fator de Boltzmann que depende da energia E_j , os estados de maior energia (e menos prováveis) recebem menor peso

$$Z_i = \sum_{j=1}^{\infty} g_j e^{-(E_j - E_1)/kT}$$

 Z_{I} : neutro; Z_{II} : ionizado, Z_{III} : 2 vezes ionizado

Notação:

$$\frac{A \text{ equação de Saha}}{N_{i+1}} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_i/kT}$$
Meghnad Saha (1920)

É a população relativa entre os átomos do estado de ionização i (N_i) e os de ionização i+1 (N_{i+1})

 Z_i : função de partição do nível de ionização *i* χ_I : energia de ionização

n_e: densidade eletrônica (número de e- livres por unidade de volume)

A equação de Saha

Como

$$\frac{N_{i+1}}{N_i} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_i/kT}$$

$$P_e = n_e kT$$

$$\rightarrow \frac{N_{i+1}}{N_i} = \frac{2kT Z_{i+1}}{P_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_i/kT}$$

 $P_e = 0.1 \text{ Nm}^{-2} \text{ em estrelas frias a 100 Nm}^{-2} \text{ em quentes.}$

N_i: População de átomos no nível de ionização i Z_i : função de partição do nível de ionização i χ_I : energia de ionização **Combinando as equações de Saha e Boltzmann Exemplo 8.1.4.** Calcular a fração de átomos de hidrogênio ionizado $N_{II} / N_{total} = N_{II} / (N_{I} + N_{II})$, de 5000 a 25 000 K. Adotar $P_e = 20 \text{ Nm}^{-2}$

$$\frac{N_{i+1}}{N_i} = \frac{2kT Z_{i+1}}{P_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_i/kT}$$

The Saha equation (8.9) will be used to calculate the fraction of atoms that are ionized, $N_{\rm II}/N_{\rm total} = N_{\rm II}/(N_{\rm I} + N_{\rm II})$, as the temperature *T* varies between 5000 K and 25,000 K. However, the partition functions $Z_{\rm I}$ and $Z_{\rm II}$ must be determined first. A hydrogen ion is just a proton and so has no degeneracy; thus $Z_{\rm II} = 1$. The energy of the first excited state of hydrogen is $E_2 - E_1 = 10.2$ eV above the ground state energy. Because 10.2 eV $\gg kT$ for the temperature regime under consideration, the Boltzmann factor $e^{-(E_2 - E_1)/kT} \ll 1$. Nearly all of the H I atoms are therefore in the ground state (recall the previous example), so Eq. (8.7) for the partition function simplifies to $Z_{\rm I} \simeq g_1 = 2(1)^2 = 2$.

$$Z_I = 2$$
 $Z_{II} = 1$ $\chi_I = 13.6 \,\mathrm{eV}$

Em nosso caso específico, do razão entre o estado ionizado (N_{II}) e o neutro (N_I), a equação de Saha fica assim:

$$\frac{N_{\rm II}}{N_{\rm I}} = \frac{2kT \ Z_{\rm II}}{P_e \ Z_{\rm I}} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_{\iota}/kT}$$

Porém, precisamos calcular: $\frac{N_{\rm II}}{N_{\rm total}} = \frac{N_{\rm II}}{N_{\rm I} + N_{\rm II}}$ Dividindo numerador e denominador por N_I: $\frac{N_{\rm II}}{N_{\rm total}} = \frac{N_{\rm II}/N_{\rm I}}{1 + N_{\rm II}/N_{\rm I}}$

Why hydrogen Balmer lines are stronger in A0 stars (10000 K)?

$$\frac{N_2}{N_{\text{total}}} = \frac{N_2}{N_{\text{I}} + N_{\text{II}}}$$

$$\frac{N_2}{N_{\text{total}}} = \frac{N_2}{N_{\text{I}} + N_{\text{II}}} = \left(\frac{N_2}{N_{\text{I}} + N_{\text{II}}}\right) \left(\frac{N_{\text{I}}}{N_1 + N_2}\right)$$

$$\frac{N_2}{N_{\text{total}}} = \frac{N_2}{N_{\text{I}} + N_{\text{II}}} = \left(\frac{N_2}{N_{\text{I}} + N_{\text{II}}}\right) \left(\frac{N_{\text{I}}}{N_1 + N_2}\right)$$
$$= \left(\frac{N_2}{N_1 + N_2}\right) \left(\frac{N_{\text{I}}}{N_1 + N_1}\right)$$

$$\frac{N_2}{N_{\text{total}}} = \frac{N_2}{N_{\text{I}} + N_{\text{II}}} = \left(\frac{N_2}{N_{\text{I}} + N_{\text{II}}}\right) \left(\frac{N_{\text{I}}}{N_1 + N_2}\right)$$

$$= \left(\frac{N_2}{N_1 + N_2}\right) \left(\frac{N_{\text{I}}}{N_1 + N_{\text{II}}}\right)$$
Dividir numerador e
denominador por N_1 (10
termo) e N_1 (20 termo):
$$= \left(\frac{N_2/N_1}{1 + N_2/N_1}\right) \left(\frac{1}{1 + N_{\text{II}}/N_{\text{I}}}\right)$$

$$\frac{N_2}{N_{\text{total}}} = \frac{N_2}{N_{\text{I}} + N_{\text{II}}} = \left(\frac{N_2}{N_{\text{I}} + N_{\text{II}}}\right) \left(\frac{N_{\text{I}}}{N_1 + N_2}\right)$$

$$= \left(\frac{N_2}{N_1 + N_2}\right) \left(\frac{N_{\text{I}}}{N_{\text{I}} + N_{\text{II}}}\right)$$
Dividir numerador e
denominador por N₁ (10
denominador por N₁ (10
termo) e N₁ (20 termo):
$$= \left(\frac{N_2/N_1}{1 + N_2/N_1}\right) \left(\frac{1}{1 + N_{\text{II}}/N_{\text{I}}}\right)$$
Boltzmann Saha

FIGURE 8.9 N_2/N_{total} for hydrogen from the Boltzmann and Saha equations, assuming $P_e = 20 \text{ N m}^{-2}$. The peak occurs at approximately 9900 K.

FIGURE 8.10 The electron's position in the hydrogen atom at different temperatures. In (a), the electron is in the ground state. Balmer absorption lines are produced only when the electron is initially in the first excited state, as shown in (b). In (c), the atom has been ionized.

Linhas H e K em espectros estelares

De maneira similar, podemos estimar a intensidade das linhas de Call "H" e "K" (são linhas de Ca ionizado)

Como se compara a absorção das linhas de Balmer de H com as linhas de Ca H & K (linhas de Ca II no estado base)?

Example 8.1.5. The Sun's "surface" is a thin layer of the solar atmosphere called the *photosphere*; see Section 11.2. The characteristic temperature of the photosphere is $T = T_e = 5777$ K, and it has about 500,000 hydrogen atoms for each calcium atom with an electron pressure of about 1.5 N m⁻².¹⁴ From this information and knowledge of the appropriate statistical weights and partition functions, the Saha and Boltzmann equations can be used to estimate the relative strengths of the absorption lines due to hydrogen (the Balmer lines) and those due to calcium (the Ca II H and K lines).

We must compare the number of neutral hydrogen atoms with electrons in the first excited state (which produce the Balmer lines) to the number of singly ionized calcium atoms with electrons in the ground state (which produce the Ca II H and K lines). As in Example 8.1.4, we will use the Saha equation to determine the degree of ionization and will use the Boltzmann equation to reveal the distribution of electrons between the ground and first excited states.

T = 5777 K,
$$P_e = 1.5 \text{ N m}^{-2}$$

1 átomo de Ca para cada 500 mil átomos de H

Primeiro, calcular a razão de hidrogênio ionizado a neutro.

Do ex. 8.1.4:
$$Z_I = 2$$
 $Z_{II} = 1$ $\chi_I = 13.6 \text{ eV}$

Let's consider hydrogen first. If we substitute the partition functions found in Example 8.1.4 into the Saha equation (8.9), the ratio of ionized to neutral hydrogen is

$$\left[\frac{N_{\rm II}}{N_{\rm I}}\right]_{\rm H} = \frac{2kTZ_{i+1}}{P_eZ_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_i/kT} = 7.70 \times 10^{-5} \simeq \frac{1}{13,000}$$

Thus there is only one hydrogen ion (H II) for every 13,000 neutral hydrogen atoms (H I) at the Sun's surface. Almost none of the hydrogen is ionized.

Apenas 1 átomo de H II (H ionizado) para cada 13 000 átomos de H I (H neutro)

1 átomo de HII (Hionizado) para cada 13 000 de HI (H neutro)

Quantos desses átomos neutros se encontram em n = 2?

The Boltzmann equation (8.6) reveals how many of these neutral hydrogen atoms are in the first excited state. Using $g_n = 2n^2$ for hydrogen (implying $g_1 = 2$ and $g_2 = 8$), we have

$$\left[\frac{N_2}{N_1}\right]_{\rm H\ I} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/kT} = 5.06 \times 10^{-9} \simeq \frac{1}{198,000,000}$$

1 em cada 200 milhões de átomos de H está em n = 2

Quantos átomos de hidrogênio produzem linhas de Balmer?

$$\frac{N_2}{N_{\text{total}}} = \left(\frac{N_2}{N_1 + N_2}\right) \left(\frac{N_{\text{I}}}{N_{\text{total}}}\right) = 5.06 \times 10^{-9}$$

Apenas 1 em cada 10º átomos de H produzem linhas de Balmer!

We now turn to the calcium atoms. The ionization energy χ_I of Ca I is 6.11 eV, about half of the 13.6 eV ionization energy of hydrogen. We will soon see, however, that this small difference has a great effect on the ionization state of the atoms. Note that the Saha equation is very sensitive to the ionization energy because χ/kT appears as an *exponent* and $kT \approx 0.5$ eV $\ll \chi$. Thus a difference of several electron volts in the ionization energy produces a change of many powers of *e* in the Saha equation.

Evaluating the partition functions Z_{I} and Z_{II} for calcium is a bit more complicated than for hydrogen, and the results have been tabulated elsewhere:¹⁵ $Z_{I} = 1,32$ $Z_{II} = 2,30$ Thus the ratio of ionized to un-ionized calcium is

$$\begin{bmatrix} \frac{N_{\text{II}}}{N_{\text{I}}} \end{bmatrix}_{\text{Ca}} = \frac{2kTZ_{\text{II}}}{P_eZ_{\text{I}}} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_{\text{I}}/kT} = 918$$

A cada 918 Ca II, apenas 1 é neutro (Ca I)

Practically all of the calcium atoms are in the form of Ca II; only one atom out of 900 remains neutral. Now we can use the Boltzmann equation to estimate how many of these calcium ions are in the ground state, capable of forming the Ca II H and K absorption lines. The next calculation will consider the K ($\lambda = 393.3$ nm) line; the results for the H ($\lambda = 396.8$ nm) line are similar. The first excited state of Ca II is $E_2 - E_1 = 3.12$ eV above the ground state. The degeneracies for these states are $g_1 = 2$ and $g_2 = 4$. Thus the ratio of the number of Ca II ions in the first excited state to those in the ground state is

$$\left[\frac{N_2}{N_1}\right]_{\text{Ca II}} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/kT} = 3.79 \times 10^{-3} = \frac{1}{264}$$

Quase tudo o Call se encontra no nível base n=1

Out of every 265 Ca II ions, all but one are in the ground state and are capable of producing the Ca II K line. This implies that nearly *all* of the calcium atoms in the Sun's photosphere are singly ionized and in the ground state,¹⁶ so that almost all of the calcium atoms are available for forming the H and K lines of calcium:

$$\begin{bmatrix} \frac{N_1}{N_{\text{total}}} \end{bmatrix}_{\text{Ca II}} \simeq \begin{bmatrix} \frac{N_1}{N_1 + N_2} \end{bmatrix}_{\text{Ca II}} \begin{bmatrix} \frac{N_{\text{II}}}{N_{\text{total}}} \end{bmatrix}_{\text{Ca}}$$
$$= \left(\frac{1}{1 + [N_2/N_1]_{\text{Ca II}}} \right) \left(\frac{[N_{\text{II}}/N_{\text{I}}]_{\text{Ca}}}{1 + [N_{\text{II}}/N_{\text{I}}]_{\text{Ca}}} \right)$$
$$= \left(\frac{1}{1 + 3.79 \times 10^{-3}} \right) \left(\frac{918}{1 + 918} \right)$$

= 0.995. Quase tudo o Ca pode produzir linhas de H e K

Now it becomes clear why the Ca II H and K lines are so much stronger in the Sun's spectrum than are the Balmer lines. There are 500,000 hydrogen atoms for every calcium atom in the solar photosphere, but only an extremely small fraction, 5.06×10^{-9} , of these hydrogen atoms are un-ionized and in the first excited state, capable of producing a Balmer line. Multiplying these two factors,

$(500,000) \times (5.06 \times 10^{-9}) \approx 0.00253 = \frac{1}{395}$

reveals that there are approximately 400 times more Ca II ions with electrons in the ground state (to produce the Ca II H and K lines) than there are neutral hydrogen atoms with electrons in the first excited state (to produce the Balmer lines). The strength of the H and K lines is *not* due to a greater abundance of calcium in the Sun. Rather, the strength of these Ca II lines reflects the sensitive temperature dependence of the atomic states of excitation and ionization.

Abundâncias no Sol: 1 átomo de Ca para 500 000 de H.

Porem, 395 vezes mais *e*- no estado base do Call (para produzir linhas *H* e *K*) do que átomos de H no primeiro estado excitado (para produzir linhas de Balmer)

AstroMulheres @Astro Ladies

https://twitter.com/Astro Ladies/status/1064616777227927552

Cecilia Payne foi uma das mais brilhantes astrônomas de todos os tempos! Confira a história da mulher que descobriu a composição química das estrelas, inspirando gerações de mulheres depois dela a fazerem ciência 🐸

CECILIA PAYNE - GAPOSCHKIN NASCIDA NA INGLATERRA EM 1900, TORNOU-SE A 1ª CIENTISTA & COMPREENDER A COMPOSIÇÃO QUÍMICA DO SOL E AJUDOU A APROFUNDAR O CONHECIMENTO SOBRE AS ESTRELAS.

NA INGLATERRA NÃO SE CONTRATAVAM MULHERES COMO PESQUISADORAS O QUE A LEVOU A DEIXAR O PAÍS E IR PARA OS EUA OBTER SEU DO UTORA DO EM 1923. ELA FOI RECEBIDA EM MARVARD E HARLOW SHAPLEY, O DIRETOR DO OBSERVATORIO, A INCENTIVOU A

DESDE JOVEM ELA SE

INTERESSAVA POR FÍSICA E

FREQUENTAR A UNIVERSIDADE DE

CAMBRIDGE E NOS ANOS SEGUINTE

SUA CARREIRA A SE TORNAR

1ª MULHER A DIRIGIR O DEPTO DE ASTRONOMIA

EM HARVARD.

ASTRONOMIA, O QUE A LEYOU A

ESCREVER SUA TESE, QUE POSTERIORMENTE FOI CONSIDERADA BRILHANTE SEU TRABALHO SE DESENVOLVEU COM O AUXÍLIO E OS DADOS PRECISOS DAS "COMPUTADORAS DE HARVARD.

TEMENDO CONTESTAR A AUTORIDADE DE GRANDES CIENTISTAS CECILIA SE REFERIU ADS SEUS RESULTADOS COMO " IMPROVAVEIS"

FELIZMENTE, EM ALGUNS ANOS APOS O LANCAMENTO DE SEU TRABALHO, DESCOBRIRAM QUE ESTAVA CERTA I ANTES DE CECILIA, HAVIA UMA EQUIPE DE MULHERES CONTRATADAS PELO ASTRÔNOMO EDWARD PICKERING, CONHECIDAS COMO "AS COMPUTADORAS DE HARYARD, QUE FIZERAM UM TRABALHO BRILHANTE EKANDO MULTAS ESTRELAS COM RELACÃO ÀS EM HAVIA DUTRAS MO HENRIETT FEILIA VIRIA DE E RESOLVERIA GRANDES QUESTÕES COM O AUXILLO DOS TRABALHOS DESSAS MULHERES

CECILIA ENCONTROU UMA NOVA MANEIRA DE LER O ESPECTRO ESTELAR, OU O ARCO

IRIS DE CORES QUE DETERMINA OS COMPONENTES QUÍMICOS DAS STRELAS E TAMBEM COMPREENDE MELHOR SUAS TEMPERATURAS

OS RESULTADOS FORAM INCRÍVEIS, O SOL ERA ABUNDANTEMENTE FORMADO POR HIDROGÊNIO E HELIO, AO CONTRÁRIO DA CRENÇA NA ÉPOCA DE QUE O SOL POSSUÍA COMPOSIÇÃO QUÍMICA SEMELHANTE A DA TERRA, POREM A COMUNIDADE

> CIENTIFICA, PRINCIPALMENTE O RESPEITADO ASTRÔNOMO HENRY RUSSEL CONCLUÍRAM QUE FRA LOUCUR

SEU TRABALHO TORNOU-SE STELLAR ATMOSPHERES REFERÊNCIA NA ÁREA E CECILIA TRABALHOU O RESTO DA VIDA, INSPIRANDO GERAÇÕES A DEDICAREM SUAS VIDAS AOS ESTUDOS DAS ESTRELAS.

HARVARD OBSERVATORY MONOGRAPHS	Abundâncias relativas em \log_{10}			
MARLOW SHAPLE I, EDITOR	Cecilia Payne Estrelas	Crosta Terra		
STELLAR ATMOSPHERES	H 12.9 He 10.2	6.0		
A CONTRIBUTION TO THE OBSERVATIONAL STUDY OF HIGH TEMPERATURE IN THE	C 6.4 O 8.0	5.1 7.4		
REVERSING LAYERS OF STARS BY	Na 7.1 Mg 7.5	6.4 6.3		
CECILIA H. PAYNE	Al 6.9 Si 7.5	6.9 7.4		
1925	Ca 6.7 Ti 6.0	6.5 5.8		
De Astronomia a Astrofísica: "it approaches the subject of the physical chemistry of stellar atmospheres by treating terrestrial	Cr 5.8 Fe 6.7	4.8 6.7		

physics as the basis of cosmical physics"

34

Também, o hidrogênio tem poucas linhas no espectro de estrelas como o Sol; a maioria é devida ao ferro ...

Shapley: diretor do Harvard observatory (supervisor de doutorado da Cecilia Payne)

Professor Russell (Princeton)

Cecilia Payne foi obrigada a mencionar na tese que seus resultados sobre a alta abundância de H e He poderiam estar errados

Impossível! H e He não são dominantes no Sol!

Shapley: diretor do Harvard observatory (supervisor de doutorado da Cecilia Payne)

Professor Russell (Princeton)

Cecilia Payne foi obrigada a mencionar na tese que seus resultados sobre a alta abundância de H e He poderiam estar errados

Impossível! H e He não são dominantes no Sol!

4 anos depois Russell publicou um artigo anunciando que o Sol é maiormente H ...

Example 8.2.1. The Sun, a G2 main-sequence star, has a mass of $M_{\odot} = 1.9891 \times 10^{30}$ kg and a radius of $R_{\odot} = 6.95508 \times 10^8$ m. Its average density is thus

$$\overline{\rho}_{\odot} = \frac{M_{\odot}}{\frac{4}{3}\pi R_{\odot}^3} = 1410 \text{ kg m}^{-3}$$

Sirius, the brightest-appearing star in the sky, is classified as an A1 main sequence star with a mass of 2.2 M_{\odot} and a radius of 1.6 R_{\odot} . The average density of Sirius is

$$\overline{\rho} = \frac{2.2 \text{ M}_{\odot}}{\frac{4}{3} \pi (1.6 \text{ R}_{\odot})^3} = 760 \text{ kg m}^{-3} = 0.54 \overline{\rho}_{\odot}$$

which is about 76 percent of the density of water. However, this is enormously dense compared to a giant or supergiant star. The mass of Betelgeuse is estimated to lie between 10 and 15 M_{\odot} ; we will adopt 10 M_{\odot} here. For illustration, if we take the maximum radius of this pulsating star to be about 1000 R_{\odot} , then the average density of Betelgeuse (at maximum size) is roughly

$$\overline{\rho} = \frac{10 \text{ M}_{\odot}}{\frac{4}{3} \pi (1000 \text{ R}_{\odot})^3} = 10^{-8} \overline{\rho}_{\odot}$$

Classe de luminosidade

Antonia Maury : foi contratada em 1888 por E. Pickering (Harvard) para classificar espectros. Ela propôs um novo sistema de classificação levando

Antonia Caetana de Paiva Pereira Maury

em conta tb a forma das linhas, mas foi ignorado por Pickering.

Dwarf and Supergiant sprectra in comparison

Above: normal star Below: supergiant star

Supergigante

Note wide and diffuse hydrogen and calcium lines in normal stars atmosphere, against the extreme sharpness of the same lines in the supergiant atmosphere.

1943: Morgan-Keenan Luminosity Classes

Morgan-Keenan Luminosity Classes.

Class	Type of Star
Ia-O	Extreme, luminous supergiants
Ia	Luminous supergiants
Ib	Less luminous supergiants
II	Bright giants
III	Normal giants
IV	Subgiants
V	Main-sequence (dwarf) stars
VI, sd	Subdwarfs
D	White dwarfs

- magnitude absoluta M_v
 obtida do tipo espectral
- magnitude observada m
- distância espectroscópica *d* usando o modulo de distância

$$d = 10^{(m-M+5)/5}$$