
February 14, 2019

Deep Learning
Applications in Astronomy

debom@cbpf.br

clearnightsrthebest.com

Clécio R. Bom

Recurrent Neural Nets

But .. there is the gradient vanishing problem ….

Brazil is a great ________

“I have been staying in Brazil for the last 20 years. I can speak fluent _______.”

Long term correlations ….

LSTM Cell

LSTM Cell

LSTM Cell

LSTM – A couple of considerations
• It helps to prevent vanishing gradient, however it did not solve it completely….

• Long sequences problems, Try hundreds not thousands

• More effective in forecasting than classification

• It made history with chatbots, translators, speech-to-text, etc…

• It might need lot of embedding ….

• Resource Expensive if compared to Resnets…

LSTM – Long sequences Strategy

• Truncate

• Embed

• Subsample

• Auto Encoders

How sure is my NN ?
In a Deep Learning classification problem that classifies dogs and cats would classify a
human as a dog or a cat anyway. It would not be possible to know that the image is not a
dog, neither a cat.

It would be interesting to have a framework in which one could derive a PDF on the
predictions ….

Cat 1.00

Bayesian Nets
One may think in the weights initialization as a definition of a prior p(w). That is if we
randomly initializes it would be like a flat prior. If we add a regularization technique, that
would define a different prior.

When using dropout in the forward-pass (or any other stochastic regularisation
technique), a randomly drawn masked weight matrix corresponds to a function draw.

How sure is my NN ?
Three perspectives for uncertainty.
Epistemic uncertainty quantifies our ignorance about the models most suitable to
explain our data. Aleatoric uncertainty captures noise inherent in the environment. The
Predictive uncertainty conveys the model’s uncertainty in its output.

The dropout probability, together with the weight configuration of the network,
determine the magnitude of the epistemic uncertainty.

For a fixed dropout probability p, high magnitude weights will result in higher output
variance, i.e. higher epistemic uncertainty. With a fixed p, a model wanting to decrease its
epistemic uncertainty will have to reduce its weight magnitude (and set the weights to be
exactly zero to have zero epistemic uncertainty).

arXiv:1705.07832 arXiv:1711.00165
Lee, Jaehoon, et al. "Deep neural networks as gaussian processes." arXiv preprint arXiv:1711.00165 (2017).

https://arxiv.org/abs/1705.07832
https://arxiv.org/abs/1711.00165

Error estimative
One way out is to perform a grid-search in dropout probabilities to minimize the
epistemic uncertainty. However this is computationally very expensive.

Or the dropout probability can be optimised using a gradient method ...

Bayesian Nets - Variational

Consider the weights ω and a training dataset X = {x1,...,xN} and the corresponding
outputs Y = {y1,...,yN}, the posterior of the network weights, p(ω|X,Y), captures the
plausible network parameters. With this posterior, we can calculate the probability
distribution of the values of an output y for a new test input point x by marginalizing
over all possible weights ω

With p(ω|X,Y), we can calculate the probability distribution of the values of an output y
for a new test input point x by marginalizing over all possible weights ω.

According to the variational interpretation, dropout is seen as an approximating
distribution p(ω|X,Y) to the posterior in a Bayesian neural network with a set of
random weight matrices ω = {Wl} L l=1 with L layers and θ the set of variational
parameters.

Bayesian Nets - Variational
Consider the weights ω and a training dataset X = {x1,...,xN} and the corresponding
outputs Y = {y1,...,yN}, the posterior of the network weights, p(ω|X,Y), captures the
plausible network parameters. With this posterior, we can calculate the probability
distribution of the values of an output y for a new test input point x by marginalizing
over all possible weights ω

 We consider an approximating variational distribution, q(ω), with an analytic form. The
parameters of q(ω) are then optimized to transform q(ω) to be as close as possible to the
true posterior.
This is performed by adding minimizing their Kullback-Leibler (KL) divergence
between.

Reinforcement Learning
Nor supervised, not unsupervised.. learning by experience.

A Markov decision process relies on the Markov assumption, that the probability of the next state si+1 depends
only on current state si and action ai, but not on preceding states or actions.

Reinforcement Learning

arXiv:1312.5602

https://arxiv.org/abs/1312.5602

Reinforcement Learning
Play video Games!

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/

Reinforcement Learning
Total Reward

Future Reward

Discounted Future Reward

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/

Reinforcement Learning

Discounted Future Reward

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/

If we set the discount factor γ=0, then our strategy will be short-sighted and we rely only
on the immediate rewards. If we want to balance between immediate and future rewards,
we should set discount factor to something like γ=0.9. If our environment is
deterministic and the same actions always result in same rewards, then we can set
discount factor γ=1.

A good strategy for an agent would be to always choose an action that maximizes the
(discounted) future reward.

Q Learning

The best possible score at the end of the game after
performing action a in state s

The maximum discounted future reward when we perform action a in state s,
and continue optimally from that point on

maximum future reward for this state and action is the immediate reward plus
maximum future reward for the next state

Bellman equation

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/

Q Learning

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/

Q Learning

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/

def q_learning_with_table(env, num_episodes=500):
 q_table = np.zeros((5, 2))
 y = 0.95
 lr = 0.8
 for i in range(num_episodes):
 s = env.reset()
 done = False
 while not done:
 if np.sum(q_table[s,:]) == 0:
 # make a random selection of actions
 a = np.random.randint(0, 2)
 else:
 # select the action with largest q value in state s
 a = np.argmax(q_table[s, :])
 new_s, r, done, _ = env.step(a)
 q_table[s, a] += r + lr*(y*np.max(q_table[new_s, :]) - q_table[s, a])
 s = new_s
 return q_table

Reinforcement Learning
Play video Games!

We could also take only game states input and output the Q-value for each
possible action.

23

Region Proposal Neural Networks

24

Region Proposal Neural Networks

25

Region Proposal Neural Networks

26

Region Proposal Neural Networks

RetinaNet Architecture (2017) adapted.

What people are doing with this?

arXiv:1708.08843

arXiv:1606.07442

https://arxiv.org/abs/1708.08843
https://arxiv.org/abs/1606.07442

Example 04 - Concrete Dropouts
This is a regression problem in which we try to predict the sin(x) function.
However we use the concrete dropout method to derive a sample of predicts
measurements.

February 14, 2019

Deep Learning
Applications in Astronomy

debom@cbpf.br

clearnightsrthebest.com

Clécio R. Bom

Thank you!
Hope you have a deeper
understanding than a few days ago.

