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Recurrent Neural Nets
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But .. there 1s the gradient vanishing problem ....

Long term correlations ...
Brazil is a great
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“I have been staying in Brazil for the last 20 years. I can speak fluent
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LSTM — A couple of considerations

It helps to prevent vanishing gradient, however it did not solve it completely....
Long sequences problems, Try hundreds not thousands

More etfective in forecasting than classification

It made history with chatbots, translators, speech-to-text, etc...

It might need lot of embedding ....

Resource Expensive if compared to Resnets. ..




LSTM - Long sequences Strategy

Truncate

Embed

Subsample

Auto Encoders




How sure is my NN ?

In a Deep Learning classification problem that classifies dogs and cats would classify a
human as a dog or a cat anyway. It would not be possible to know that the image is not a
dog, neither a cat.

It would be interesting to have a framework in which one could derive a PDF on the
predictions ....




Bayesian Nets

One may think in the weights initialization as a definition of a prior p(w). That is if we
randomly initializes it would be like a flat prior. If we add a regularization technique, that

would define a different prior.

When using dropout in the forward-pass (or any other stochastic regularisation
technique), a randomly drawn masked weight matrix corresponds to a function draw.

a) Standard Neural Net (b) After applying dropout.



How sure is my NN ?

Three perspectives for uncertainty.

Epistemic uncertainty quantifies our ignorance about the models most suitable to
explain our data. Aleatoric uncertainty captures noise inherent in the environment. The
Predictive uncertainty conveys the model’s uncertainty 1in its output.

The dropout probability, together with the weight configuration of the network,
determine the magnitude of the epistemic uncertainty.

For a fixed dropout probability p, high magnitude weights will result in higher output
variance, 1.e. higher epistemic uncertainty. With a fixed p, a model wanting to decrease its
epistemic uncertainty will have to reduce its weight magnitude (and set the weights to be
exactly zero to have zero epistemic uncertainty).

arXiv:1705.07832 arXiv:1711.00165

TLee. Jachoon. et al. "Deep neural networks as caussian processes." arXzw preprint arXiv:1711.00165 (2017)


https://arxiv.org/abs/1705.07832
https://arxiv.org/abs/1711.00165

Error estimative

One way out is to perform a grid-search in dropout probabilities to minimize the

epistemic uncertainty. However this 1s computationally very expensive.
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Or the dropout probability can be optimised using a gradient method ...




Bayesian Nets - Variational

According to the variational interpretation, dropout 1s seen as an approximating
distribution p(w | X,Y) to the posterior in a Bayesian neural network with a set of
random weight matrices w = {WI1} L 1=1 with L layers and 0 the set of variational
parameters.

Consider the weights w and a training dataset X = {x1,....xN} and the corresponding
outputs Y = {yl,..,yN}, the posterior of the network weights, p(w|X,Y), captures the
plausible network parameters. With this posterior, we can calculate the probability
distribution of the values of an output y for a new test input point x by marginalizing
over all possible weights w

p(y|x,X,Y) = / p(y|x,w) p(w|X,Y) dw.

With p(w|X,Y), we can calculate the probability distribution of the values of an output y

for a new test input point x by marginalizing over all possible weights w.




Bayesian Nets - Variational

Consider the weights w and a training dataset X = {x1,....xN} and the corresponding
outputs Y = {yl,..,yN}, the posterior of the network weights, p(w|X,Y), captures the
plausible network parameters. With this posterior, we can calculate the probability

distribution of the values of an output y for a new test input point x by marginalizing
over all possible weights w

p(y|x) = / p(y|x,w)g(w) dw

We consider an approximating variational distribution, q(w), with an analytic form. The
parameters of q(w) are then optimized to transform q(w) to be as close as possible to the
true posterior.

This is performed by adding minimizing their Kullback-Leibler (KL) divergence
between.




Reinforcement Learning

Nor supervised, not unsupervised.. learning by experience.

Environment

Action

S0, A0, 171,81, A1,72,82,0+4,870-1, An—1, T, Sn

A Markov decision process relies on the Markov assumption, that the probability of the next state si+1 depends
only on current state si and action ai, but not on preceding states or actions.



Reinforcement Learning

Playing Atari with Deep Reinforcement Learning

arXiv:1312.5602

Volodymyr Mnih  Koray Kavukcuoglu  David Silver  Alex Graves loannis Antonoglou
Daan Wierstra  Martin Riedmiller

DeepMind Technologies

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider


https://arxiv.org/abs/1312.5602

Reinforcement Learning

Play video Games!
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Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/




Reinforcement Learning

Total Reward

R=r+r+1r3+...4+m,

Future Reward

Rt = Tt - Tt+1 -+ T‘t+2+. .« +Tn

Discounted Future Reward

R =1e + ¥rpsr + Vo142 .. Y™ i,

R =71 + Y41 +¥(Ora2+...)) =1 + YRy

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/



Reinforcement Learning

If we set the discount factor y=0, then our strategy will be short-sighted and we rely only
on the immediate rewards. If we want to balance between immediate and future rewards,
we should set discount factor to something like y=0.9. If our environment is
deterministic and the same actions always result in same rewards, then we can set

discount factor y=1.

A good strategy for an agent would be to always choose an action that maximizes the
(discounted) future reward.

Discounted Future Reward si5
R =1e + ¥rpsr + Vo142 .. Y™ i,

R =71 + Y41 +¥(Ora2+...)) =1 + YRy

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/



Q Learning

The maximum discounted future reward when we perform action a in state s,
and continue optimally from that point on

The best possible score at the end of the game after
performing action a in state s

Q(se, ar) = max Reyq
Bellman equation
Q(s,a) =1 +ymax,Q(s',a’)
maximum future reward for this state and action is the immediate reward plus

maximum future reward for the next state

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/



Q Learning

L= %['r + mazyQ(s',a") — Q(s, a)]2
ta;,get pred}Etion

initialize Q[num states,num actions] arbitrarily
observe initial state s
repeat
select and carry out an action a
observe reward r and new state s’
Qls,al = Qls,al + alr + y max,» Q[s',a']l - Qls,al)
s = s'
until terminated

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/



Q Learning L= %[C + mazyQ(s, a'z — E)(s,a}P

target prediction

def g learning with table(env, num episodes=500) :
g _table = np.zeros((5, 2))

y = 0.95

lr = 0.8

for 1 in range (num episodes) :
s = env.reset ()
done = False

while not done:
if np.sum(g tablel[s,:]) ==
# make a random selection of actions
a = np.random.randint (0, 2)
else:
# select the action with largest g value in state s
a = np.argmax (g table[s, :])

new s, r, done, = env.step(a)
g table[s, a] += r + lr*(y*np.max(g_table[new s, :]) - g table[s, a])
S = new_s

return g table

Example adapted from: https://ai.intel.com/demystifying-deep-reinforcement-learning/



Reinforcement Learning

Play video Games!

Q-value
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We could also take only game states input and output the Q-value for each
possible action.



Region Proposal Neural Networks
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Region Proposal Neural Networks

Region Proposal Network
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Region Proposal Neural Networks

lens 1.000 lens™1.000

RetinaNet Architecture (2017) adapted.

lens:

lens 0.975

lens 1.000
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What people are doing with this?

UNCERTAINTIES IN PARAMETERS ESTIMATED WITH NEURAL NETWORKS:
APPLICATION TO STRONG GRAVITATIONAL LENSING

LAURENCE PERREAULT LEVASSEUR, YASHAR D. HEZAVEH , AND RISA H. WECHSLER

Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA, USA
SLAC National Accelerator Laboratory, Menlo Park, CA, 94305, USA

Draft version August 30. 2017

arXiv:1708.08843
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DEEP RECURRENT NEURAL NETWORKS FOR SUPERNOVAE CLASSIFICATION

ToM CHARNOCK' AND ADAM Moss'

1 School of Physics € Astronomy
University of Nottingham, Nottingham, NG7 2RD, England

Radio Galaxy Zoo: ClaRAN — a deep learning classifier
for radio morphologies

Chen Wu'*, O. Ivy Wong! ¥, Lawrence Rudnick?, Stanislav S. Shabala’
Matthew J. Alger*’, Julie K. Banfield*®, Cheng Soon Ong’, Sarah V. White’,
Avery F. Garon?, Ray P. Norris®?, Heinz Andernach'®, Jean Tate!!

Vesna Lukic'?, Hongming Tang'?, Kevin Schawinski'#, Foivos I. Diakogiannis'>!



https://arxiv.org/abs/1708.08843
https://arxiv.org/abs/1606.07442

Radio Galaxy Zoo: ClaRAN — a deep learning classifier

for radio morphologies
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Figure 1. Three classification examples (A, B, and C)
on RGZ subjects — each of them 3 x 3’ in size —
FIRST J081700.6+571626, FIRST J070822.2+414905, and FIRST
J083915.7+285125. The first column shows the FIRST radio emis-
sion. The second column shows the CLARAN output — a box en-
compassing each identified source, and its morphology is labelled
as iC_jP, where i and j denotes the number of radio components
and the number of radio peaks respectively. Each morphology
label is associated with a score between 0 and 1, indicating the
probability of the quoted morphology class. The first two columns
share the same color bar at the bottom, denoting flux density val-
ues in Jy/beam. The last column shows the corresponding WISE
infrared image overlaid with 5o radio contours. The contour levels
(Jy/beam) are shown at the bottom of each infrared image.



Radio Galaxy Zoo: ClaRAN — a deep learning classifier
for radio morphologies

1.00 1 —
0.95 1

First, for each selected subject f, we ensure all radio sources _ 0.901

within f have a user-weighted Consensus Level (CL) no less % 0.85 -

than 0.6. CL measures the relative agreement levels of clas- ‘_§ —

sification among citizen scientists and is defined in Banfield s

et al. (2015) as the largest fraction of the total classifica- §0'75'

tions for a radio source that have been agreed upon. This 0.70

is to ensure most radio sources exposed to CLARAN are 0.65 - l l

morphologically human-resolvable. aEo 1 l

1C-1P 1C-2P 1C-3P 2C-2P 2C-3P 3C-3P

Figure 2. The distribution of the consensus level (CL) across six
morphology classes in the data set that consists of 10,744 RGZ
subjects selected from DR1. The whiskers above and below the



Radio Galaxy Zoo: ClaRAN — a deep learning classifier
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relevant elements

Radio Galaxy Zoo: ClaRAN — a deep learning classifier . .

for radio morphologies false negatives true negatives
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Table 1. Data augmentation of missing observations. The
missing data is replaced randomly by a value between #; and
13.

DEEP RECURRENT NEURAL NETWORKS FOR SUPERNOVAE CLASSIFICATION

ToMm CHARNOCK' AND ADAM Moss'
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Figure 3. (Top) Example light curve in the 4 g,r, i,z
bands for SN ID 551675 (a type-Ia) in the Supernovae Pho-
tometric Classification Challenge data Kessler et al. (2010a).
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Figure 1. Predicted 68.3% uncertainties for lensing flux magnification, pr, as a function of the true value of this parameter. The orange, blue, and black errorhars
correspond to examples where the true values fall within the 68.3, 95.5, and 99.7% confidence intervals respectively. -



Example 04 - Concrete Dropouts

This is a regression problem in which we try to predict the sin(x) function.

However we use the concrete dropout method to derive a sample of predicts

measurements.

Train set
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