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Why Conv layers are so cool?
Why it took so long to be in ‘fashion’?

It’s all about the way they are connected, locally.

Sparsity, specialization of certain areas, redundancy.

Optimizing millions of parameters requires nice computing resources...




Activation Functions
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Do not take advantage of Neural Nets for non linearities

estimation. Useful in regression problems since is unbounded.

Hard to train, derivative vanishes.

Easily differentiable. In the last layers can be associated with
probability.

Similar results as in sigmoid activations in intermediate layers.
However, is numerically faster.

Tentative to avoid the vanishing of the RelLu derivative.

Adapted from
https://towardsdatascience.com
activation-functions-neural-networks-1cbd9£8d91d6


https://towardsdatascience.com/

Why Sigmoid for classification?

Consider two classes, y € {0, 1} .

The conditional probability of class
P (y|z(x)) where z = ol h(x) + b the output

of a set of neurons with x inputs.



Why Sigmoid for classification?

the unnormalized log probability can be

written as

log ﬁ(y = 1lz) =z (neurons “on”
log P(y =0]|z) =0 (neurons “off”)
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Why Sigmoid for classification?

The Normalized version:

P(y _ 1|Z) _ exp(z)

1+e\‘p(')
P(y=0Iz) = l—l—e\p() °
This is
Py=1lz)= 1?2;;):) B @ 5 1+ex;)(-:) =6(2)

exp(z)

Py =0lz)=0(-2).



Some Loss intuition...

Consider the binary classification of red and greens. The True class probability of a

set of z points is:

Probability
o
S

0.25
0.00 O
=3 —2 3 4 5
P (y —_— 1 | Z ) = 0 (Z) Example adapted from :
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explana
tion-a3ac6025181a



Some Loss intuition...

Classification Log Loss
I Negative :
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If the predicted probability of the true class gets closer to zero, the
-log( p(x)) increases exponentially.



Some Loss intuition...

That is the behaviour we may require in a loss function like Cross- Entropy

H(p,q) =Y p;logq; = ylogy — (1 - y)log(1 - y)

Where p 1s true probability distribution of the true labels and q is the predicted
probability of the predicted labels.

In our binary green-red example, tor a green point (y=1), it adds log(} ) to
the loss, that 1s, the log predicted probability ot it being green. For a red
point (y=0) 1t adds log(1-3), that 1s, the predicted log probability of it.

H(p,q) = H(p,p)



Cross-Entropy V.S. L2 (RMSE)

Penalizes small probabilities like p=0.1 and q=0.05 in contrast to p=0.80 and
q=0.81 so fractional error are important.

It q=0 log(q) diverges .
Also RMSE is usually be more suitable in regression problems.
For the L2 Loss:

oL 1, -
20, ~ N (@;0;—1;)(0;)

So if one has a classification problem we would expect the desired output o1 to be
1 or O as the it approaches this results the derivative would be very small and,
therefore, the update in the weights.



What Metrics in my deep learning model is for?

Common Classification Metrics

Binary Accuracy: binary_accuracy, acc

K.mean(K.equal(y_true, K.round(y_pred)))

Categorical Accuracy: categorical_accuracy,

K.mean(K.equal(K.argmax(y_true, axis=-1), K.argmax(y_pred, axis=-1)))

Common Regression Metrics

Mean Squared Error: mean_squared_error, MSE or mse
Mean Absolute Error: mean_absolute_error, MAE, mae



Common issues ...

Vanishing gradients—In case of deep networks, for any activation
function, abs(dW) will get smaller and smaller as we go backwards with every layer during
back propagation. The earlier layers are the slowest to train in such a case.

Exploding gradients—This is the exact opposite of vanishing gradients. When these
weights are multiplied along the layers, they cause a large change in the cost. Thus, the
gradients are also going to be large. This means that the changes in W, by W—a *

dW, will be in huge steps, the downward moment will increase.

This may result in oscillating around the minima or even overshooting the optimum again and again and
the model will never learn!



Most Important Piece of Advice against overfitting : Keep it
Simplel
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Some intuitions on your LOSS

A /

f
loss '
very high learning rate

low learning rate

high learning rate

good learning rate

Source:



Overfitting

accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting
e

epoch

Source:



Evaluating your model

Source: https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative



Receiver Operating Characteristic

True positive = correctly identified
False positive = incorrectly identified
True negative = correctly rejected
False negative = incorrectly rejected

E.g. 3 Classes

Class 1 vs classes 2&3
Class 2 vs classes 1&3 '
Class 3 vs classes 1&2




Cross- validation — K-fold validation
That is the gold standard!

Shuffle the dataset randomly.
Split the dataset into k sets
For each k set:
Take the group as a hold out or test data set
Take the remaining groups as a training data set
Fit a model on the training set and evaluate it on the
test set
Save the evaluation scores in the test set

Summarize the results by defining average (or median)
and std on each threshold.




A little bit of historical Nets ...

LeNet-5

Yann Lecun's LeNet-5 model was developed in 1998 to identify handwritten
digits for zip code recognition in the postal service. This pioneering model
largely introduced the convolutional neural network as we know it today.

C3: f. maps 16@10x10
C1: feature maps S4: . maps 16@5x5
6@28x28
S2: f. maps

6@14x14

INPUT
32x32

|
Full coanection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf




A little bit of historical Nets ...

The subsampling layers use a form of average pooling.
Parameters: 60,000

C3: f. maps 16@10x10
gé zfgigge maps S4: . maps 16@5x5
S2: f. maps

6@14x14

INPUT
32x32

Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf




A little bit of historical Nets ...

AlexNet was developed by Alex Krizhevsky et al. in 2012 to compete in
the ImageNet competition. The general architecture is quite similar to
LeNet-5, although this model is considerably larger. The success of this
model (which took first place in the 2012 ImageNet competition)
convinced a lot of the computer vision community to take a serious look
at deep learning for computer vision tasks.
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https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F3065386

A little bit of historical Nets ...

AlexNet — 60 Million parameters!!!!

650,000 neurons, consists of five convolutional layers, some of which are
followed by max-pooling layers, and three globally-connected layers with a final
1000-way softmax. It was trained on two NVIDIA GPUs for about a week.
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https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F3065386

A little bit of historical Nets ...

VGG-16 (2014)— 138 Million parameters!!!!

224x224x3 224 x224x64

28 X 28 X 512 7TXTx512

A =1°
ﬁx Lax 212 1x1x4096 _1x1x1000

@ convolution+ReLU
Elj max pooling
fully connected+ReLU

) softmax

https://arxiv.org/abs/1409.1556



What can we do with such BFT (Best-Fitted and Trained?)
models today?

Unsupervised learning
Transfer Learning

Ben Kenobi - Old and Wise
lots of optimized parameters



Going Deeper with Convolutions - AKA - Inception paper

Bigger size typically means a larger number of parameters, which makes the enlarged network
more prone to ovetfitting, especially if the number of labeled examples in the training set is limited.
(...)The other drawback of uniformly increased network size is the dramatically increased use of
computational resources. For example, in a deep vision network, if two convolutional layers are chained,
any uniform increase in the number of their filters results in a quadratic increase of computation. If the
added capacity is used inefficiently (for example, if most weights end up to be close to zero), then much
of the computation is wasted.(...).

Szegedy, Christian, et al. "Going deeper with
i . o convolutions." Proceedings of the IEEE conference on computer
storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf vision and pattern recognition. 2015.



Going Deeper with Convolutions - AKA - Inception paper

A fundamental way of solving both of these issues would be to introduce sparsity and replace the fully
connected layers by the sparse ones, even inside the convolutions. Besides mimicking biological
systems, this would also have the advantage of firmer theoretical underpinnings due to the groundbreaking
work of Arora et al. [2]. Their main result states that if the probability distribution of the dataset is
representable by a large, very sparse deep neural network, then the optimal network topology can
be constructed layer after layer by analyzing the correlation statistics of the preceding layer
activations and clustering neurons with highly correlated outputs.

Szegedy, Christian, et al. "Going deeper with

) ) o convolutions." Proceedings of the IEEE conference on computer
storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf vision and pattern recognition. 2015.



The Main (Inception) Idea...

GoogleNet (2014)

The idea is that you don’t need to know in advance if it was better to do, for example, a 3X3 then
a 5X5. Instead, just do all the convolutions and let the model pick what’s best. Additionally, this

architecture allows the model to recover both local feature via smaller convolutions and high
abstracted features with larger convolutions.

Filter
concatenation

il e ome.

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

s

Previous layer




The Main (Inception) Idea...

GooglLeNet (2014)
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two successive

: 5x5 convolution
3x3 convolutions

3x3 convolutions could be further deconstructed into
successive 3x1 and 1x3 convolutions.

Generalizing this insight, we can more efficiently compute an nXn convolution as a 1Xn
convolution followed by a nX1 convolution..

https://www.jeremyjordan.me/convnet-architectur



What to choose?

Merge layers

Add/Merge Subtract

Multiply

Average Maximum

©) = © & @

Filter
concatenation

N

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions
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4

1x1 convolutions

1x1 convolutions
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3x3 max pooling

Previous layer
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We still have millions of parameters to fit!!!! We still need
some ideas to prevent ovetfitting

ResNet Block

The author’s hypothesis is that it 1s easy to optimize
the residual mapping function F(x) than to optimize
the original, unreferenced mapping .

X

weight layer
| relu
) ] "
weight layer identity
F(x) +x
If the identity mapping is optimal, We can easily push the
residuals to zero (F(x) = 0) than to fit an identity mapping (x,
H(x) = F(x)+x input=output) by a stack of non-linear layers.

It also put a new light on the vanishing gradient problem...



Residual Neural Networks
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Residual Neural Networks

e Won Ist place in the ILSVRC 2015 classification competition with top-5 error rate of 3.57%
(An ensemble model)

¢ Won the Ist place in ILSVRC and COCO 2015 competition in ImageNet Detection,
ImageNet localization, Coco detection and Coco segmentation.

* Replacing VGG-16 layers in Faster R-CNN with ResNet-101. They observed a relative
improvements of 28%

 Efficiently trained networks with 100 layers and 1000 layers also.

* ResNet Network Converges faster compared to plain counterpart of it.

* Identity vs Projection shortcuts. Very small incremental gains using projection shortcuts in all the
layers. So all ResNet blocks use only Identity shortcuts with Projections shortcuts used only when
the dimensions changes.



How the other Nets were in ILSVRC 2015

method top-1 err. top-5 err.
VGG [41] (ILSVRC' 14) - 8.437
GoogLeNet [44] (ILSVRC' 14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 571
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 525
ResNet-101 19.87 4.60
ResNet-152 19.38 449

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except T reported on the test set).



What people are doing with this?

nature

International journal of science

Machine and Deep Learning Applied to Galaxy
Letter = Published: 30 August2017 MOI‘phOlOgy = A Complete ClaSSiﬁcation Catalog
Fast aUtomated 3n31ySiS Of Strong P. H. Barchi,'* R. R. de Carvalho,> R. R. Rosa,! R. Sautter,! M. |

. . . o 4 4
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2 Astrophysics Division, National Institute for Space Research (INPE), S. J. dos Campos, 12245-970, Brazil
3 Physics Department, Brandeis University, 415 South St, Waltham, MA 02453, USA

neural net vy Orks 4 Computing Institute, Federal Fluminense University (UFF), Niteréi, 24220-900, Brazil
Yashar D. Hezaveh B4, Laurence Perreault LevasseurB®& & Philip J. Marshall

MNRAS 000, 1-12 (2018) Preprint 30 July 2018 Compiled using MNRAS IXTEX style file v3.0

Galaxy Morphology Classification with Deep
Convolutional Neural Networks

= I R B ) ) J
Jia-Ming Dai,"? * Jizhou Tong!
! National Space Science Center, Chinese Academy of Sciences, Beifing 100190,China
2 University of Chinese Academy of Sciences, Beiping 100049, China



Machine and Deep Learning Applied to Galaxy
Morphology - A Complete Classification Catalog

* The samples are images in r-band in the SDSS-DR7
redshift range 0.03 < z < 0.1, Petrosian magnitude in
r-band brighter than 17.78 (spectroscopic magnitude
limit)

* They tested a ResNet and Inception

TP+TN

OA =
TP+TN+ FP+ FN

e K is the area of the galaxy’s Petrosian ellipse divided
. by the area of the Full Width at Half Maximum (FWHM).

K=>5

DT | SVM | MLP | CNN

11 classes 49.3 48.8 49.4 63.0

9 classes 60.9 63.2 63.0 70.2

7 classes 63.0 62.5 63.3 /474

3 classes 71.9 74 T1.2 80.8

of convolutions applied to a galaxy. In the top left, the i

X ef n
1 performed. Below, on the left, the ouput of the first



Galaxy Morphology Classification with Deep
Convolutional Neural Networks

Jia-Ming Dai,"? * Jizhou Tong!

Figure 1. Example galaxy images from the dataset. Each row
represents a class. From top to bottom, their Galaxy Zoo 2 labels
are: completely round smooth, in-between smooth, cigar-shaped
smooth, edge-on and spiral. They are referred to as 0, 1, 2, 3 and

IS

True Positive Rate

The galaxy images in this study are drawn from Galaxy
Zoo-the Galaxy Challenge 1 , which contain 61578 JPG
color galaxy images with probabilities that each galaxy is
classified into different morphologies.
The authors tested 2 ResNet.
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nature

International journal of science

Letter | Published: 30 August2017 e This is a regression problem. The fundamental question

Fast automated an alysi s of stron g is: Can we derive Strong lensing parameters without
actually make the inverse modelling?

gravitational lenses with convolutional < The authors tested a Inception-v411, AlexNet12,

Overfeatl3

* The dataset is composed by Galaxy Zoo Challenge

Yashar D. Hezaveh B4, Laurence Perreault LevasseurB8 & Philip J. Marshall HST-like Images where they removed the lens galaxy
using an ICA.

neural networks

Network O (3 €y T Y

Network 1 (Inception) 0.03 0.04 0.05 0.06 0.06
Network 2 (AlexNet) 0.03 0.04 0.04 0.05 0.06
) i Network 3 (Overfeat) 0.04 0.05 0.05 0.06 0.06
Vit |1 e e e | e e | | AR Network 4 0.03 0.05 0.06 0.05 0.05
Combined Network 0.02 0.04 0.04 0.04 0.04

Figure 1: Comparison of parameters estimated using neural networks (on the y-axis) with their

true values (z-axis). From left to right, the panels correspond to the Einstein radius and the z— and Table 1: Errors of the individual and combined networks. The columns present the 68% errors

i e e chade o areas repres o P %, 3 ale B . . g . s
y~— components of complex ellipticity. The shaded blue areas represent the 68, and 95% intervals for the Einstein radius, 0, the two components of complex ellipticity (¢, ¢,) and the coordinates
of the recovered parameters on a test set that the network has not been trained on. The small gray of the lensing galaxy (z, ). The angular parameters (9, «, and ) are given in units of arc-seconds.
dots show the parameters of all 10,000 test samples. The colored data points and their error bars

(95% confidence) correspond to real HST images of gravitational lenses in SL2S sample, with the

true parameters set to previously published values'”.
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Example 02 -
Resnet50 SL
finder

Let’s say is a bit more
complex than the
previous...

Total params: 23,591,810
Trainable params:
23,538,690

Non-trainable params:

53,120

On this version the
K-fold is implemented



Example 02 - Resnet50 SL finder

On this version the K-fold is implemented
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