## SOLUÇÕES DE INTRUMENTAÇÃO E INFRAESTRUTURA PARA AS LINHAS DE LUZ DO SIRIUS

#### Lucas Sanfelici

Grupo de Suporte à Instrumentação das Linhas de Luz (SIL) Laboratório Nacional de Luz Síncrotron – Centro Nacional de Pesquisas em Energia e Materiais



#### Centro Nacional de Pesquisas em Energia e Materiais





Organização privada sem fins lucrativos contratada pelo MCTIC para gerir o complexo de laboratórios





#### **CNPEM - Eixos de Atuação**







Instalações abertas a usuários externos



Pesquisa e desenvolvimento *in-house* 



Apoio à geração de inovação



Treinamento, educação e extensão





## Fontes de Luz Síncrotron pelo Mundo







## Anéis UVX e SIRIUS















### Como funciona?





Crédito: Síncrotron ALBA https://youtu.be/b3mEmE4Gu A





## Parâmetros Principais



| Sirius Storage Ring                    |                        |                   |                                 |
|----------------------------------------|------------------------|-------------------|---------------------------------|
| Beam energy                            | 3.0 GeV                | STORAGE RING      |                                 |
| Circumference                          | 518 m                  | BOOSTER           |                                 |
| Lattice                                | 20 x 5BA               | E = 3  GeV        | NdEoR Superbond                 |
| Current, top up                        | 350 mA                 | Emit = 3.5 nm.rad | B = 3.2 T (XR, $E_c$ = 19 keV ) |
| Bunch length                           | 8.8 ps                 |                   |                                 |
| Energy spread                          | 0.085 %                |                   | Quadrupoles                     |
| RF frequency                           | 500 MHz                |                   | QG <sub>max</sub> =45 T/m       |
| Hor. emittance (bare                   | 250> <b>150 pm.rad</b> | E = 150 MeV       |                                 |
| Vert. emittance                        | 2.5> <b>1.5 pm.rad</b> |                   |                                 |
| Straight section low $\beta_x/\beta_y$ | 1.35 m / 1.6 m         |                   | A HOLEAN                        |
|                                        |                        |                   |                                 |
| 6.5/7.5 m                              | Straight Sections      |                   | Low field dipoles               |
| for Inse                               | ertion Devices         |                   | B=0.58 T (UV and IR)            |
| (Undula                                | itors, Wigglers)       |                   |                                 |



### Fontes de Luz





rério da ologia, cações



### Telescópios / Câmeras



#### **CRAB NEBULA**



http://www.chemistryland.com/CHM107/Final/FinalWritten.html



![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

# PRÉDIO

![](_page_13_Picture_3.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_4.jpeg)

![](_page_16_Picture_0.jpeg)

## Estabilidade Mecânica – Afeta TUDO

![](_page_16_Picture_2.jpeg)

![](_page_16_Figure_3.jpeg)

![](_page_16_Picture_4.jpeg)

# 

#### Prototipagem de Pisos

![](_page_17_Picture_2.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_0.jpeg)

#### Impacto sobre a Laje

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_3.jpeg)

![](_page_18_Picture_4.jpeg)

![](_page_19_Picture_0.jpeg)

#### Impacto sobre a Laje

![](_page_19_Picture_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

## Instrumentação do Piso e Blindagem

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

sirius

![](_page_20_Picture_3.jpeg)

![](_page_20_Figure_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_21_Figure_0.jpeg)

A – Junta tipo barra de transferência "Tucano Joint"B – Lages e colunas fundidas no local

C – Sapatas de Neoprene D – Solo-cimento E – Aterro F – Solo compactado

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

# ACELERADORES

![](_page_22_Picture_3.jpeg)

![](_page_23_Figure_0.jpeg)

O feixe deve ser estável em ~ 5% de suas dimensões transversais considerando perturbações de diferentes escalas de tempo (~minutos até ~milésimos de segundo)

Especificações p/ estabilidade de posição do Sirius (feixe + *eletrônica + mecânica*): 100 nm RMS (0.1 Hz – 1kHz) 140 nm RMS (1 hora) 5 μm RMS (1 semana)

![](_page_24_Picture_0.jpeg)

## Superperíodo (x 20)

![](_page_24_Picture_2.jpeg)

#### ANEL

- 120 dipolos
- 260 quadrupolos
- 280 sextupolos
- 280 corretoras lentas (H + V)
- 160 corretoras rápidas

• 50 dipolos

BOOSTER

- 75 quadrupolos
- 30 sextupolos
- 50 corretoras

![](_page_24_Picture_13.jpeg)

![](_page_25_Picture_0.jpeg)

### Berço de Alta Estabilidade

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

### > 1000 Eletroímãs

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

![](_page_26_Picture_10.jpeg)

INOVAÇÕES E COMUNICAÇÕES

![](_page_27_Picture_0.jpeg)

#### ~800 Fontes de Corrente

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

| Model    | FBP  |
|----------|------|
| Qt.      | 740  |
| Current: | 10 A |
| Voltage: | 5 V  |

![](_page_27_Picture_5.jpeg)

| Model    | FAP          |
|----------|--------------|
| Qt.      | 45           |
| Current: | 150 to 700 A |
| Voltage: | 50 to 450 V  |

![](_page_27_Picture_7.jpeg)

| Model    | FAC          |  |
|----------|--------------|--|
| Qt.      | 6            |  |
| Current: | 30 to 1100 A |  |
| Voltage: | 50 to 800 V  |  |

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

![](_page_28_Picture_0.jpeg)

## NEG – Bombeamento Distribuído

![](_page_28_Picture_2.jpeg)

**Pros** (full NEG coated strategy):

- Simple chamber's design
- More compact -> space saving
- Low PSD yield -> Fast vacuum conditioning

Cons (full NEG coated strategy):

- Limited number of activations (10 ...?...30)
- High temperature bake-out for NEG activation
- Many bellows to accommodate chamber's expansion during bake-out

![](_page_28_Picture_11.jpeg)

ר

Cooling Tube

Sn 100 Ce Filler Metal

Sirius - main cross section

![](_page_28_Picture_12.jpeg)

![](_page_28_Picture_13.jpeg)

![](_page_28_Picture_14.jpeg)

![](_page_28_Picture_15.jpeg)

Pumping Station(based on Petra III design)Crotch absorberIon pump (201/s)NEG cartridgeVacuum gauges0.3 mm SS sectorFor fast orbit correctors

→ BPMs

![](_page_29_Picture_0.jpeg)

### Sistemas de RF

![](_page_29_Picture_2.jpeg)

## 50 kW RF Tower and Cavity for the Booster

![](_page_29_Picture_4.jpeg)

- Amplifier modules based on BLF578 transistor supplied by BBF (China) under license of Soleil
- 2 storage ring towers being assembled for NCC (Petra 7) operation at the end of this year.
- Superconducting cavity ordered from Research Instruments (RI), to be delivered in 2020.

#### 60 kW Tower for the Storage Ring (8 units)

![](_page_29_Picture_9.jpeg)

![](_page_29_Figure_10.jpeg)

![](_page_29_Picture_11.jpeg)

![](_page_30_Picture_0.jpeg)

### Sistema de Controle dos Aceleradores

![](_page_30_Picture_2.jpeg)

PÁTRIA AMADA BRASIL

![](_page_30_Figure_3.jpeg)

![](_page_31_Picture_0.jpeg)

## Monitor de Posição de Elétrons (BPM)

![](_page_31_Picture_2.jpeg)

PÁTRIA AMADA BRASIL

![](_page_31_Picture_3.jpeg)

#### Resolução: 100 nm

![](_page_31_Figure_5.jpeg)

5,000

![](_page_31_Picture_6.jpeg)

![](_page_32_Picture_0.jpeg)

## Medida de Posição e Correção de Órbita

![](_page_32_Picture_2.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_32_Picture_5.jpeg)

RFFE Modules

![](_page_32_Picture_7.jpeg)

![](_page_32_Picture_8.jpeg)

#### **ADC + FPGA boards**

![](_page_32_Picture_10.jpeg)

signals

Digital

![](_page_32_Picture_12.jpeg)

#### **MicroTCA crate**

![](_page_32_Figure_14.jpeg)

|  | Signal | Processing, | Data Acqu | uisition and | Control | Platform |
|--|--------|-------------|-----------|--------------|---------|----------|
|--|--------|-------------|-----------|--------------|---------|----------|

- System maintainability
- High-end communication interfaces enable FOFB
- DSP algorithms flexibility ٠

https://ohwr.org/project/bpm/wikis/home

| ParameterValueResolution (RMS) @ 0.1 Hz to 1 kHz180nrResolution (RMS) @ turn-by-turn full bandwidth133nr1 hour position stability (RMS)140nr1 week stability (RMS)145nrBeam current dependence (decay mode)140nrFiling pattern dependence (top-up mode)140nrFirst-turn resolution (RMS)500nrHorizontal/Vertical plane coupling14% |                                                |       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|----|
| Resolution (RMS) @ 0.1 Hz to 1 kHz80nmResolution (RMS) @ turn-by-turn full bandwidth3µm1 hour position stability (RMS)140nm1 week stability (RMS)5µmBeam current dependence (decay mode)140nmFilling pattern dependence (top-up mode)140nmFirst-turn resolution (RMS)500µmHorizontal/Vertical plane coupling1%                    | Parameter                                      | Value |    |
| Resolution (RMS) @ turn-by-turn full bandwidth3µ1 hour position stability (RMS)140nm1 week stability (RMS)55µBeam current dependence (decay mode)140nmBeam current dependence (top-up mode)140nmFilling pattern dependence55µFirst-turn resolution (RMS)500µHorizontal/Vertical plane coupling1%                                  | Resolution (RMS) @ 0.1 Hz to 1 kHz             | 80    | nm |
| 1 hour position stability (RMS)140nm1 week stability (RMS)55µmBeam current dependence (decay mode)11µmBeam current dependence (top-up mode)140nmFilling pattern dependence55µmFirst-turn resolution (RMS)500µmHorizontal/Vertical plane coupling1%                                                                                | Resolution (RMS) @ turn-by-turn full bandwidth | 3     | μm |
| 1 week stability (RMS)5µmBeam current dependence (decay mode)1µmBeam current dependence (top-up mode)140nmFilling pattern dependence5µmFirst-turn resolution (RMS)500µmHorizontal/Vertical plane coupling1%                                                                                                                       | 1 hour position stability (RMS)                | 140   | nm |
| Beam current dependence (decay mode)1µmBeam current dependence (top-up mode)140nmFilling pattern dependence55µmFirst-turn resolution (RMS)500µmHorizontal/Vertical plane coupling1%                                                                                                                                               | 1 week stability (RMS)                         | 5     | μm |
| Beam current dependence (top-up mode)140nmFilling pattern dependence55µmFirst-turn resolution (RMS)500µmHorizontal/Vertical plane coupling1%                                                                                                                                                                                      | Beam current dependence (decay mode)           | 1     | μm |
| Filling pattern dependence5μmFirst-turn resolution (RMS)500μmHorizontal/Vertical plane coupling1%                                                                                                                                                                                                                                 | Beam current dependence (top-up mode)          | 140   | nm |
| First-turn resolution (RMS)500µmHorizontal/Vertical plane coupling1%                                                                                                                                                                                                                                                              | Filling pattern dependence                     | 5     | μm |
| Horizontal/Vertical plane coupling 1 %                                                                                                                                                                                                                                                                                            | First-turn resolution (RMS)                    | 500   | μm |
|                                                                                                                                                                                                                                                                                                                                   | Horizontal/Vertical plane coupling             | 1     | %  |

![](_page_32_Picture_21.jpeg)

![](_page_32_Picture_22.jpeg)

![](_page_32_Picture_23.jpeg)

![](_page_33_Picture_0.jpeg)

## Medida de Posição e Correção de Órbita

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

- Sistema de controle MIMO
- 320 entradas / 160 saídas
- Sensores e atuadores distrubuídos ao longo de 518 m
- Taxa de amostragem em malha fechada: 100 kHz
- Processamento do algoritmo de feedback em FPGA, distribuído em 20 nós
- Distribuição de dados determinística de dados com comunicação multigigabit (6 Gbps) por fibra óptica

![](_page_33_Picture_10.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

# LINHAS DE LUZ

![](_page_34_Picture_3.jpeg)

![](_page_35_Picture_0.jpeg)

Cabana Experimental

Visão Geral da Linha MANACÁ

Cabana Óptica

11 4 1 1

. .

Salas de Apoio: Controle da Linha/Experimento Visão Geral da Linha MANACÁ

![](_page_38_Picture_0.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_44_Picture_0.jpeg)

## Componentes Típicos de uma Linha de Luz

![](_page_44_Figure_2.jpeg)

![](_page_44_Figure_3.jpeg)

![](_page_45_Picture_0.jpeg)

## **Onduladores Delta**

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

https://www6.slac.stanford.edu/news/2016-06-15-spiraling-light-slac-x-ray-laser-offersnew-glimpses-molecules.aspx

![](_page_45_Picture_5.jpeg)

Photon Energy [keV]

![](_page_45_Picture_8.jpeg)

- So far, mostly used in free electron lasers (Lutman et al., Nature Photonics 2016)
  - Needs small beam stay clear (V & H) like in Sirius
- Full polarization control
  - Circular polarization even in tender x-rays
  - Vertical polarization for side bounce monochromator
- Higher field in linear polarization
  - $B_{max}$  Increase by a factor of  $\sqrt{2}$
- Negligible effect in the beam dynamics
  - No need for active multipolar compensation in soft x-rays (Vilela et al., IPAC2017)
- Simpler mechanics
  - Magnets are moved perpendicular to main forces

![](_page_45_Picture_20.jpeg)

![](_page_45_Picture_21.jpeg)

![](_page_45_Picture_22.jpeg)

![](_page_46_Picture_0.jpeg)

![](_page_47_Picture_0.jpeg)

## Espelho com Refrigeração Criogênica

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

Table 1: X-ray Mirror Systems Summarized Specs

| Description                                    | Spec                                               |  |
|------------------------------------------------|----------------------------------------------------|--|
| <i>Ry</i> range:                               | > 1 mrad                                           |  |
| Ry resolution:                                 | < 100 nrad                                         |  |
| <i>Ry</i> stability:                           | < 30 nrad RMS <sub>2.5kHz</sub>                    |  |
| Resonances:                                    | >150 Hz                                            |  |
| Thermo-mechanically in-<br>duced slope errors: | < 50 nrad                                          |  |
| Power load:                                    | < 50 W                                             |  |
| Cooling scheme:                                | indirect cryocooling via copper braid and cryostat |  |

![](_page_47_Picture_6.jpeg)

![](_page_47_Picture_7.jpeg)

PÁTRIA AMADA BRASIL

## Metrologia Óptica

![](_page_48_Picture_1.jpeg)

#### **Measurement Instruments**

- Fizeau Zygo Dynafiz
  - Area measurements of optical surfaces
  - Sub-nm precision
  - Good for low frequency measurements
  - Difficult to measure surfaces with low radius (< 100m)
- Long Trace Profiler (LTP)
  - Inline measurement of optical surfaces
  - High frequency measurements
  - Measures the optical surface slope with a f-Θ lens optical system
  - Difficult to measure surfaces with low radius
- Nanometer Optical Component Measuring Machine (NOM) - Assembly in progress
  - LTP with another independent system that measures using an autocollimator
  - Two measurements at the same time to increase accuracy and reliability
  - It is expected to be able to measure low radius surfaces

![](_page_48_Figure_17.jpeg)

![](_page_48_Picture_18.jpeg)

![](_page_48_Figure_19.jpeg)

![](_page_48_Figure_20.jpeg)

![](_page_48_Picture_21.jpeg)

![](_page_49_Picture_0.jpeg)

#### Modelagem e Caracterização

![](_page_49_Picture_2.jpeg)

![](_page_49_Figure_3.jpeg)

![](_page_50_Picture_0.jpeg)

### Monocromador de Alta Dinâmica

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_51_Picture_0.jpeg)

## Predictive Engineering - Dynamic Error Budget

![](_page_51_Picture_2.jpeg)

PÁTRIA AMADA

BRASIL

![](_page_51_Figure_3.jpeg)

# 

## Design Examples: LN2 Manifold and Thermal Modeling

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

![](_page_53_Picture_0.jpeg)

### **In-Position Performance**

![](_page_53_Picture_2.jpeg)

PÁTRIA AMADA BRASIL

![](_page_53_Figure_3.jpeg)

![](_page_54_Picture_0.jpeg)

## Estação Experimental Tarumã - CARNAÚBA

![](_page_54_Picture_2.jpeg)

- Estação do tipo Nanoprobe resolução < 10nm: Sensível à distúrbios vindos do piso, variações térmicas, acústica...
- Posicionada a 135 metros da fonte: desafio de estabilidade p/ componentes ópticos!
- Alta versatilidade de experimentos: desafios para conciliar diversas técnicas e condições ambientais
- ~150 GB de dados por segundo com processamento paralelo em tempo real!

![](_page_54_Picture_7.jpeg)

![](_page_55_Picture_0.jpeg)

## Tarumã – Ambientes de Amostra

![](_page_55_Picture_2.jpeg)

![](_page_55_Picture_3.jpeg)

![](_page_56_Picture_0.jpeg)

## Tarumã – Metrologia de Alta Resolução

![](_page_56_Picture_2.jpeg)

![](_page_56_Figure_3.jpeg)

#### Sistema de movimentação:

- Movimentação em dois níveis de resolução (long-stroke, short-stroke)
- Metrologia com resolução de 1 nm
- Sensores capacitivos em configuração de Abbé com relação à posição do foco
- Alta rigidez de fixaçao para garantir acoplamento até >300Hz

![](_page_56_Figure_9.jpeg)

![](_page_56_Picture_10.jpeg)

![](_page_57_Picture_0.jpeg)

### Tarumã – Par de Espelhos

![](_page_57_Picture_2.jpeg)

![](_page_57_Figure_3.jpeg)

![](_page_58_Picture_0.jpeg)

## Tarumã – Par de Espelhos

![](_page_58_Picture_2.jpeg)

![](_page_58_Figure_3.jpeg)

![](_page_59_Picture_0.jpeg)

#### $\pi$ -M3GA Detectors Project

![](_page_59_Picture_2.jpeg)

![](_page_59_Picture_3.jpeg)

#### Detector Backend – Local HPC for on-flight tomography data processing and rendering

![](_page_59_Picture_5.jpeg)

![](_page_60_Picture_0.jpeg)

### $\pi$ -M3GA Family

![](_page_60_Picture_2.jpeg)

![](_page_60_Picture_3.jpeg)

![](_page_61_Picture_0.jpeg)

![](_page_61_Picture_2.jpeg)

![](_page_61_Figure_3.jpeg)

![](_page_61_Picture_4.jpeg)

![](_page_62_Picture_0.jpeg)

### Scientific Computing (GPU-centered)

![](_page_62_Picture_2.jpeg)

![](_page_62_Figure_3.jpeg)

![](_page_62_Picture_4.jpeg)

![](_page_63_Picture_0.jpeg)

![](_page_63_Picture_1.jpeg)

![](_page_63_Picture_2.jpeg)

![](_page_64_Picture_0.jpeg)

![](_page_64_Picture_1.jpeg)

# CRONOGRAMA

![](_page_64_Picture_3.jpeg)

![](_page_65_Picture_0.jpeg)

## Sirius beamlines and science programs

![](_page_65_Picture_2.jpeg)

| PHASE | BEAMLINE | ENERGY (keV) | TECHNIQUES               |
|-------|----------|--------------|--------------------------|
| I – A | MANACÁ   | 5 – 20       | Serial micro and nano MX |
| I – A | EMA      | 3 – 35       | Extreme Conditions       |
| I – A | MOGNO**  | 20/40/70     | Cone beam Tomography     |
| I – A | CATERETÊ | 3 – 12       | CDI, XPCS                |
| I – A | CARNAÚBA | 2 – 15       | spectro-ptychography     |
| I – A | IPÊ      | 0.08 – 2     | AP-RIXS; ARPES           |
| I — B | SABIÁ    | 0.25 – 2.5   | AP-XPS; XMCD             |
| I — B | JATOBÁ** | 30 – 200     | XRD-CT                   |
| I — B | INGÁ     | 4 – 24       | IXS                      |
| I — B | QUATI**  | 4 – 45       | Quick-EXAFS              |
| I — B | SAPUCAIA | 4 – 24       | High-Throughput SAXS     |
| I — B | PAINEIRA | 4 – 24       | XPD                      |
| П     | COLIBRI  | 0.1 – 1.5    | PEEM, CDI                |
| П     | IMBÚIA** | 0.001 – 1 eV | nano-FTIR                |
| П     | XARU**   | 4 – 45       | EXAFS                    |
| П     | HARPIA   | 5 – 30       | TR-XPD                   |
| П     | HERA**   | 30 - 120     | XTMS                     |
| П     | SAGUI    | 4 – 24       | SAXS                     |

| Phase                                               | Number of<br>beamlines | Status      | ;          |
|-----------------------------------------------------|------------------------|-------------|------------|
| 1-A                                                 | 6                      | Constructio | on 🔵       |
| 2*                                                  | 5                      | Funding     | ٠          |
| 1-B                                                 | 7                      | Design      | $\bigcirc$ |
| * Mainly refurbished beamlines from the UVX machine |                        |             |            |

![](_page_65_Figure_5.jpeg)

\*\*Based on Bending Magnets

![](_page_66_Picture_0.jpeg)

![](_page_66_Picture_1.jpeg)

# DESTAQUES

![](_page_66_Picture_3.jpeg)

## **OBRIGADO!**

#### LUCAS.SANFELICI@LNLS.BR

1990A