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• A center dedicated to the science and
industrial application of graphene and
other 2D materials

• Began its activities in 2013

• Headquarters building opened on 2 
march 2016

• 9-storey building
• Class 1000 clean room
• Photonics, chemistry, materials labs
• Space for spin off companies

• 3 areas of interest: Photonics, Energy, 
Composite Materials
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About MackGraphe
(Graphene and Nanomaterials Research Center) 
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Talk outline

• Graphene
• Basics
• Fabrication
• Electronic/optoelectronic/plasmonic properties

• Graphene devices for THz technologies
• Antennas
• Detectors
• Filters/polarizers 

• Conclusions and outlook



What is graphene?

• A 1 atom thick sheet composed of sp2 carbon atoms
assembled in a hexagonal crystal lattice

• The world’s first (but not only) 2D material
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The thinnest material
A million times thinner than a 
human hair and, therefore, flexible.

Transparent
Graphene absorbs only
2.3% of incident light. It 
is, therefore, almost
invisible to naked eye.

The strongest
material
>200 times stronger than
steel. 

The best electricity
conductor
The best known electricity
conductor.

The highest
thermal
conductivity
10 times higher
thermal conductivity
than in copper. 

Graphene

The lightest material
3 gram of graphene covers a 
football field.

Graphene: 
a superlative material



Obtaining graphene from graphite: 
mechanical exfoliation

Scientific American, 20 March, 2008

Graphene
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Au contacts

graphite

• optical image
• SEM image
• design 
• contacts and mesa

The first electronic circuits

Courtesy: Prof. Castro Neto 7



K. S. Novoselov et al., PNAS 102, 10451 (2005) 8

Other 2D materials



Ways to obtain graphene
Mechanical exfoliation

Crystal quality: highest
Scalability: low

Continuous area: small
Total area: small

Interaction w/ environment: low

From Minot Group – Oregon State Univ.

Chemical vapor deposition

Crystal quality: medium/high
Scalability: medium

Continuous area: large
Total area: small/medium

Interaction w/ environment: low

Zhao  et al., Chem Soc Rev 46, 4417 (2017)

Epitaxial growth

Quality: high
Scalability: medium/high

Continuous area: large
Total area: small

Interaction w/ environment: low

Nicolosi et al., Science 340, 419, 1226419 (2013)

Chemical/liquid assisted
chemical exfoliation

Crystal quality: low/medium
Scalability: high

Continuous area: small
Total area: large

Interaction w/ environment: high
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Oven

Copper foil

CH4

Obtaining graphene in a larger
scale: chemical vapor deposition

From Minot Group – Oregon State Univ.



Obtaining graphene in a larger
scale: epitaxial growth

Zhao  et al., Chem Soc Rev 46, 4417 (2017)

Otsuji et al., J. Phys D 45, 303001 (2012)

~1000oC
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Changes in the band structure
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Dimensionality reduction: 
consequences to electrons
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Linear (conical) dispersion relation, instead of
parabolic

vF (electron’s phase velocity) is
independent of E

In a material with an usual 
(parabolic) dispersion

v = 2E
m

Dimensionality reduction: 
consequences to electrons

kxky

E

E(k) = !v
F
k
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In which other situation fermions 
exhibit E proportional to k?

E(k) = !2k 2c2 + mc2( )2
= !ck

Relativistic dispersion with m = 0

Equations are identical if  vF à c
and m* = 0 (zero effective rest mass)

kxky

E

E(k) = !v
F
k

Linear (conical) dispersion relation, instead of
parabolic

Conical dispersion: 
consequences to electrons
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• One consequence of the conical dispersion: 
density of states

Electron surface density in the conduction band 

D(E) = k(E)
π

dk
dE

= E
π!v

F

1
!v

F

= E

π !v
F( )2

(factor 2 
accounts for 2 
1BZ points 
contributing)

E

D(E) graphene

parabolic 2D

Conical dispersion: 
consequences to electrons
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n(E
F
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• Doped graphene versus neutral graphene

Electrical doping of graphene
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e-

Neutrality point
EF = 0



• Doped graphene versus neutral graphene
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e-

Electron doped graphene
EF > 0

–

+
–
+

Electrical doping of graphene



• Doped graphene versus neutral graphene
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Hole doped graphene
EF < 0 e-

+ 

–
+ 
–

Electrical doping of graphene



Intraband transition versus 
interband transition
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intraband transition

e-

interband transition

e-



• We can, therefore, see that there will be an intraband and
an interband optical conductivity:
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𝜎 𝜔 = 𝜎$%&'( 𝜔 + 𝜎$%&*' 𝜔

Intraband transition versus 
interband transition



Interband transition: 
Pauli blocking
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interband transition

e-

X

• When ℏ𝜔 < 2𝐸/: the Pauli exclusion principle
prevents interband transsition è 𝜎$%&*' ⟶ 0



Dielectric tunability
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Low and Avouris, ACS Nano 8, 1086 (2014)



23de Oliveira and de Matos, Sci. Rep. 5, 16949 (2015)

• 𝜀3 = 2.5 + 𝑖𝜎/ 𝜔𝜖9𝑡3
• Drastic dielectric function tunability

𝜎$%&'(
dominates

𝜎$%&*'
dominates

ℏ𝜔 = 800 meV

Dielectric tunability



Spectral tunability in 
graphene loaded antennas
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• Bias induced changes in graphene’s dielectric function in 

the metal gaps tune the spectral response
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• 𝜎$%&'( gives graphene its conductive character, and it can
be approximated by the Drude conductivity.

• The (intraband) Drude conductivity is given by

• For graphene, we can write

• So that:

m = !k
v

F

=
E

F

v
F
2
=
! πn

q

v
F

σ (ω ) =
v

F
e2τ n

q

! π 1− iτω( )

Intraband conductivity

𝜎 𝜔 =
𝑛=𝑒?𝜏

𝑚 1 − 𝑖𝜏𝜔
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• In a parabolic dispersion 2D material:

• And therefore

m = d 2E

dp2

⎛

⎝⎜
⎞

⎠⎟

−1

= c
1
!2

σ (ω ) ∝
e2τn

q

!2 1− iτω( )

constant
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Intraband conductivity



• Over relevant nq values, graphene’s conductivity tunes 
much more than that of parabolic 2D materials

graphene

parabolic material

nq

σ
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Intraband conductivity



Graphene field effect 
transistors (GFETs)
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• Ambipolar behavior

• 2D field effect electronic and 
optoelectronic devices (logic 
gates, photodetectors, …)

• Very high charge mobility 
(ballistic charge movement)

p doped graphene
EF < 0

Undoped graphene
EF = 0

n doped graphene
EF > 0



GFETs as room temperature 
THz detectors
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• 2 lobes of a log-periodic circular toothed
antenna connected to the source and top
gate

• Incoming fields modulate charge density
• Non-resonant response
• A nonlinearly rectified Vsd generated the

detected signalVicarelli et. al, Nature Mat. 11, 865 (2012).



GFETs as room temperature 
THz detectors
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• Tests @ 0.3 THz, but broadband operation expected
• Noise equivalent power limited by the (improvable) charge

mobility in the device
• A device based on bilayer graphene also shown
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GFETs as room temperature 
THz detectors
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• Tests at 0.6 THz
• Rv up to 14 V/W, NEP as low as 515 pW.Hz1/2
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.• A somewhat better performance with CVD graphene



Heterodyne detection with a 
graphene bolometric mixer
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• For high quality graphene, quantum effects emerge and alter
the intraband conductivity of graphene, adding a temperature
dependent term: 𝜎$%&'( = 𝜎D'EF* + 𝜎G𝑙𝑛 𝑇/1𝐾

• The 2nd term is relatively small except for when 𝑛= → 0
(𝜎D'EF* → 0)

• This requires high control over spurious graphene doping
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Heterodyne detection with a 
graphene bolometric mixer
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Heterodyne detection with a 
graphene bolometric mixer
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• Ultrafast (~20 ps) heat dissipation via hot electron diffusion
into the gold leads lead to 8 GHz bandwidth



Heterodyne detection with a 
graphene bolometric mixer
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Lara-Avila et. al, Nature Astronomy (2019).

• Background radiation limits the performance in the lab.
Performance in space (~0 background) can be predicted:



• Results presented so far assume that plasma oscillation
in graphene is overdamped.

• When electron scattering rate (1/𝜏) is low, surface
plasmon polatitons may be excited, significantly
improving interaction with radiation

Surface plasmon polaritons
in graphene

36



• Collective surface charge oscillations coupled to light

Surface plasmon polaritons
in graphene

medium 1
ε1 >0

medium 2 ε2> 0

JS, ρS

• TM mode with exponentially decaying fields along z
• Boundary conditions: E

1x
= E

2x

H
1y
−H

2y
= −J

x
= −σE

2x 37



• Boundary conditions yield: 

• For ωτ >>1

• In the electrostatic limit (b 2 >> k0
2ε1,2)

ε
1
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Surface plasmon polaritons
in graphene
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q
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𝜀G + 𝜀?
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Y. Bludov et al., Int. J. Mod. Phys. B 27, 1341001 (2013)

!ω
pl
=

e2E
F
β

2πε
0
ε

Surface
plasmon

Light

b

Surface plasmon polaritons
in graphene

Phase mismatch
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• For graphene: 
• For parabolic materials:
• è (graphene)

(parabolic 2D) 

ω
pl
∝ n

q
1/4β1/2

E
F
∝ n

q

E
F
∝ n

q

ω
pl
∝ n

q
1/2β1/2

ωpl

nq

nq
1/4

nq1/2

Much more 𝜔pl tunability in graphene

Surface plasmon polaritons
in graphene
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Surface plasmon polaritons
in graphene

λIR/λp = 50-60
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Localized surface plasmons
in graphene
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• The other way to overcome phase
mismatch is to excite localized
plasmons in micro/nanostructured
graphene

1.5 – 12 THz
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Filters/polarizers based on 
localized surface plasmons
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• Multiple doped graphene monolayers
• 8.2 dB polarization indep. rejection



Filters/polarizers based on 
localized surface plasmons
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• Interlayer Coulomb 
interaction tunes filter

• 9.5 dB polarization
extinction ratio



A resonant plasmonic detector
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• Graphene bilayer FET
• FET acts as a plasmonic cavity and a rectifying element
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A resonant plasmonic detector
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• Resonant peaks:
– correspond to plasmonic Fabry-Perot modes
– can be exploited to obtain spectral resolution
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Conclusions and outlook

• Graphene present electronic, optoelectronic
and plasmonic properties that make it 
attractive for THz applications

• The high charge mobility, electrical tunability
and low temperature dependence are 
attractive features for use in astronomical 
instruments

• For space-bourne applications susceptibility to 
the space environment (e.g. cosmic rays, 
radiation) is yet to be further tested.
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