

Unveiling the local and distant Universe with Subaru's Prime Focus Spectrograph (PFS)

Laerte Sodré Jr.

Departamento de Astronomia Instituto de Astronomia, Geofísica e Ciências Atmosféricas Universidade de São Paulo

> SPAnet Instrumentation Meeting 2019 Universidade Presbiteriana Mackenzie October 25, 2019

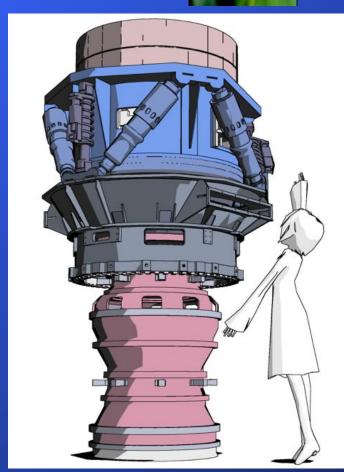
a bit of history

- 2001 Gemini Science Committee recommends to launch discussions on new instruments
- 2003 Gemini meeting @Aspen: concept of WFMOS (based on Sam Barden's KAOS)
- 2005 Gemini commissions two competing conceptual designs for WFMOS
- 2008 DeGaS concept (Dark Energy Galactic Archaeology Spectrograph) – PI: Richard Ellis
- 2009 Gemini approves the DeGaS proposal
- 2009 Gemini abandons the WFMOS proposal: \$\$!
- 2009 Japan/Subaru assumes the project
- 2020/21: first light and beginning of the survey

PFS collaboration

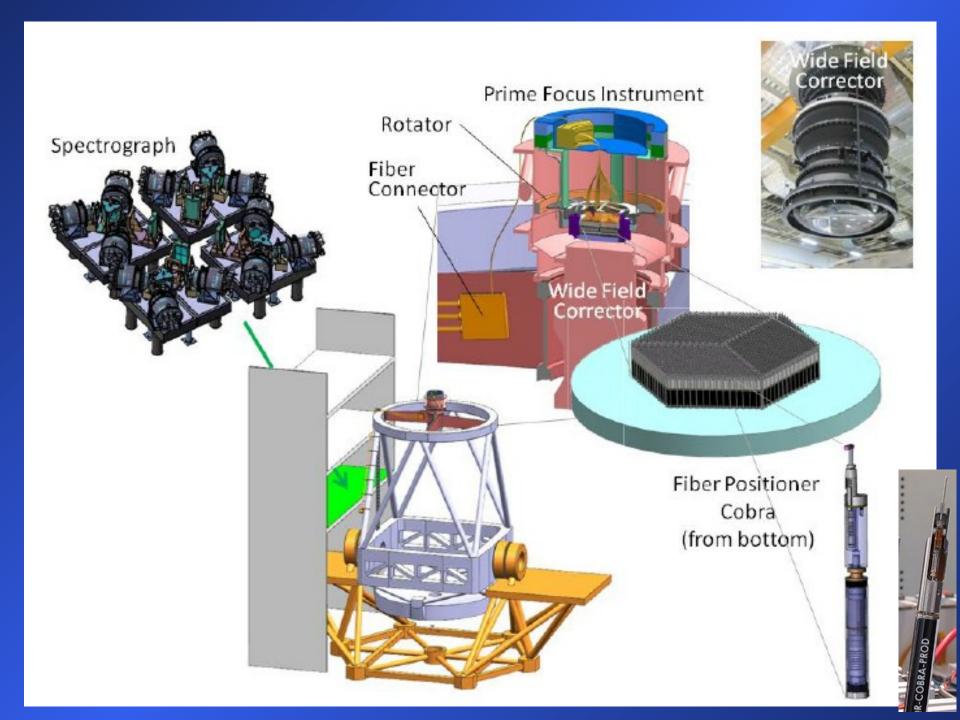
Subaru Prime Focus Spectrograph (PFS)

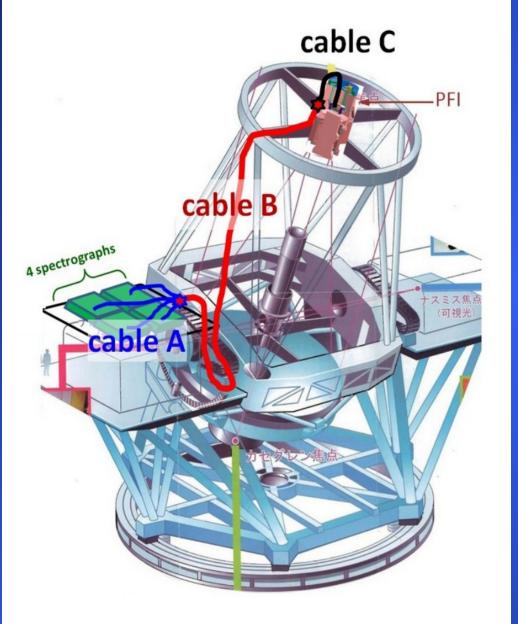
wide field (1.3 deg wide hexagonal FOV)
massively multiplexed: ~2400 optical fibers
4 spectrographs, each with 3 arms: blue, red, NIR

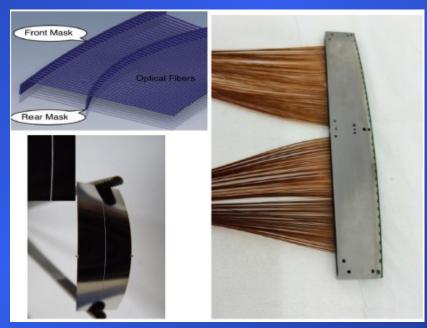

- built by an international collaboration
- PI: Hitoshi Murayama (Kavli IPMU)
- start of the PFS survey: 2021
 (~360 nights during ~5 years)
- goal: address questions on cosmology, galaxy and AGN evolution, and Galaxy archaeology to understand the dark sector of the universe

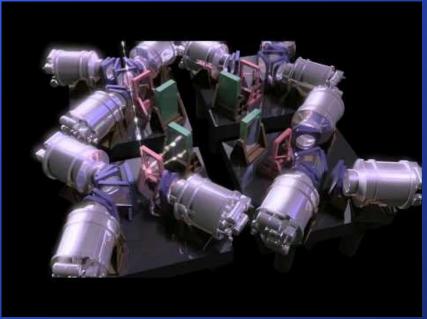
SuMIRe Subaru Measurement of Images and Redshifts

Imaging and spectroscopy on the Subaru telescope

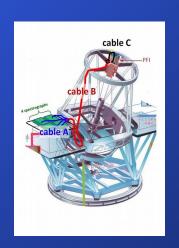



- imaging:
- HyperSuprimeCam (HSC)
- 0.9B pixels, 3 ton camera
- **1.5 degree diameter FOV**
- HSC survey: 2014-2019
 Subaru Strategic Program (SSP)
- spectroscopy: PFS




PFS Fast Facts

- Subaru Prime Focus Spectrograph: spectroscopic part of the SuMIRe project
- wide field: ~1.3 deg diameter
- high multiplicity: 2394 fibers
- fiber diameter: ~1.05 arcsec
- minimum fiber separation ~30 arcsec
- quick fiber reconfiguration: ~60 120 sec (TBC)
- VIS-NIR coverage: 380-1260nm simultaneously
- low resolution mode: ~2.5 A resolution
- medium resolution mode (around 800nm): ~1.6 A resolution
- science operations: from 2021



summary

- PFS will be a major player in the study of the low and high-z universe during the next decade
- wide field (1.3 deg wide hexagonal FOV)
- massively multiplexed: ~2400 optical fibers
- 4 spectrographs, each with 3 arms: blue, red, NIR
- start of the PFS survey: 2021
 (~360 nights during ~5 years)

M. Takada et al., 2014, PASJ, 66, 1 (arXiv:1206.0737) N. Tamura et al., 2018, SPIE 10702E

http://sumire.ipmu.jp/en/2652 https://www.youtube.com/watch?v=5mW3v2k8Ofo

	Prime Focus	Instrument (PFI	()		
Field of view (hexagonal)	Diameter of circumscribed circle: 1.38 deg				
	Area: 1.25 deg^2				
Number of fibers	2394 science fibers and 96 fixed fiducial fibers.				
Fiber density	$2000 \text{ deg}^{-2} (0.6 \text{ arcmin}^{-2})$				
Fiber core diameter	127 μm (=1.12 (1.02) arcsec at the field center (edge), respectively)				
Positioner pitch	8mm (=90.4 (82.4) arcsec at the field center (edge), respectively)				
Positioner patrol field diameter	9.5mm (=107.4 (97.9) arcsec at the field center (edge), respectively)				
Fiber minimum separation	~30 arcsec				
Fiber configuration time	\sim 60-120 sec (TBC)				
Number of AG cameras	6				
Field of view per AG camera	5.1 arcmin ²				
Sensitivity of AG camera	S/N = 30(100) for $r = 20$ mag (AB), 1(10) sec exposure.				
	Spectrograp	oh System (SpS)			
Spectral arms	Blue	Red		NIR	
Spectral arms		Low Res.	Mid. Res.	MIK	
Spectral coverage	380-650nm	630-970nm	710-885nm	940-1260nm	
Dispersion	0.7 Å/pix	0.9 A/pix	0.4 Å/pix	0.8 A/pix	
Spectral resolution	2.1 Å	2.7 Å	1.6 Å	2.4 Å	
Resolving power	2300	3000	5000	4300	
SpS throughput	53% (at 500nm)	57% (at 800nm)	54% (at 800nm)	33% (at 1100nm)	

The competition

Facility	Telescope Diameter (m)	Surface Area (m²)	Field of view (deg ²)	Multiplex Number
MAYALL DESI	3.8	9.6	8	5,000
SUBARU PFS	8.0	48.75	1.33	2,400
VLT MOONS	8.0	48.75	0.136	1,000
MSE	11.2	96.0	1.5	4,000
SpecTel	11.4	87.89	4.91	15,000

arXiv:1907.06795

landscape of fiber-fed spectrographs in large (D > 6m) telescopes

- Gran Telescope de Canarias (10.4m) MEGARA IFU & MOS capabilities MOS with ~100 fibers in a 3.5 x 3.5 arcmin²
- Hobby Eberly Telescope VIRUS spectrograph
 150 IFUs, each with 230 optical fibers
- VLT@ESO FLAMES/GIRAFFE 130 fibers,
 FOV = 25 arcmin diameter

thanks to Alessandro Ederoclite