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1. Data and Issues

Data

Data
Multivariate data : many observations of variate characters for
objects representative of a population.

objects : individuals
characters : variables

→ statistics and analysis of the population
EXAMPLES

I For each person of a
population, observe
size, weight, eyes color,
hair color, number of
children, age, etc...

I For an acoustic signal,
observe time, frequency

I For each pixel of an
image, observe the
wavelengths
pixel = object
wavelength = character
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1. Data and Issues

Data

Data
EXAMPLES

I For each person of a
population, observe
size, weight, eyes color,
hair color, number of
children, age, etc...

I For an acoustic signal,
observe time, frequency

I For each pixel of an
image, observe the
wavelengths
pixel = object
wavelength = character

What can we do with that ?
Analysis of a population

I Which characters are relevant
(how many) ?
→ Dimension reduction

I How to compare two different
objects ? → Metrics

I Can we group some objects
together ?
→ Classification

I Can we detect an object in the
population ? → Detection
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1. Data and Issues

Data

Hyperspectral imaging
I Images collection
I Spectra collection
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1. Data and Issues

Data

Hyperspectral data

Collection of spectra Collection of images
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1. Data and Issues

Data

Hyperspectral data

Usual representation

Cube Matrix R: a pixel is a vector (R′ = D)

pixel = object or individual
wavelength = variable or character
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1. Data and Issues

Data

Hyperspectral data

Space representation

objects space variables space
vector pixels vector images
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1. Data and Issues

Data

Multivariate statistical models
Let x be a random vector representing the pixels vectors,
µ = E [x]
Gaussian density law

fG(x) =
1

(2π)p/2
1
|Σ|1/2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
Σ : covariance matrix of the data, Σ = E [xx′]

2-D scatterplot
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1. Data and Issues

Data

Multivariate statistical models

Gaussian density law

Constant density levels are ellipsoids

(x− µ)Σ−1(x− µ) = cte (1)
Example : 2-D Normal
distribution

x =

(
x1
x2

)
; ρ = cov(x1,x2)

σ1σ2

linear correlation coefficient

Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
|Σ| = detΣ = (σ1σ2)2(1− ρ2)
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1. Data and Issues

Issues

Motivation
I The reflectance spectrum or the emitting spectrum is

representative of the observed material→ object
identification

spectral signatures of variate materials
spectral libraries : ASTER : http://speclib.jpl.nasa.gov
USGS : http://speclab.cr.usgs.gov/spectral.lib04/spectra-lib04.html
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1. Data and Issues

Issues

Motivation
I The reflectance spectrum or the emitting spectrum is

representative of the observed material→ object
identification

I → Quantitative estimation of the material abundances in
each pixel (sub-pixel)

Linear mixing model
X = AS or R = X + N
A pure materials
”endmembers” matrix
S abundances fractions for
each pixel and each
endmember
xi =

∑
j ajisj
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1. Data and Issues

Issues

Difficult points

→ Spectral variability

→ Physical data models for corrections
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1. Data and Issues

Issues

Applications

Many applications :
I Military (detection),
I Agriculture (ecosystems)
I Geoscience
I Industrial (survey, mines),
I Astronomy
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Applications

EXAMPLE
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1. Data and Issues

Issues

Applications
For launched ground monitoring applications such as
teledetection

I Radiance spectra observed
I Needs to correct solar illumination
I Needs to correct atmospherical absorption

Reflectance(λ) = Lo(λ
Lsol (λ)T (λ)cosθ −

Latm(λ
Lsol (λ)T (λ)cosθ Lo observed

luminance, LsolandLatm resp. solar and atmospheric luminance, T (λ)
atmospherical transmittance, θ angle illumination.
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1. Data and Issues

Issues

Spectral window
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2. Principal component analysis and Independent component analysis

PCA
Principal components: projections of the data on its mains
directions in the multidimensional space.
Main direction = direction for which the variance of the
projected data is maximum
maximum energy or maximum inerty
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2. Principal component analysis and Independent component analysis

PCA
Correlated image and uncorrelated images
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2. Principal component analysis and Independent component analysis

PCA
Center the data→ X

Problem
First component : find a unit vector u such as X′u has
maximum dispersion (maximum energy)
Following components : find orthogonal unit vectors such as
X′u has maximum dispersion
Can be solved with Lagrangian multipliers formulation.

Solution
I First component: maximize L = u′1XX′u1 − λ(u′1u1 − 1)

I Following components: maximize
L = u′2XX′u2 − λ(u′2u2 − 1)− δu′2u1

I Solution: XX′U = ΛU, U =
(

u1 ... uL
)

Principal directions: eigenvectors of XX′
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2. Principal component analysis and Independent component analysis

PCA

Eigenvectors and eigenvalues values equation
XX′U = ΛU
XX′ ≈ E [xx′] = Σ covariance matrix of the random vector x

PCA and KL
PCA ≈ Karhunen-Loëve transform (statistical point of vue)
Principal components :

y = U′x

Property : y is uncorrelated, mean=0
The transform z = Λ−1/2U′ whitens the data.
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2. Principal component analysis and Independent component analysis

Example

PCA of a HYDICE scene. HYDICE: sensor with 1m − 60cm
resolution, 220 spectral bands and spectral resolution of 10 nm

a b c

Mean of the data cube (a), scatterplot of the data cube for
wavelengths number 60 and 120 (b), and mean spectrum (c)
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2. Principal component analysis and Independent component analysis

Example
First components of a HYDICE scene.

Mean of the data cube and 7 first PCA components
(components 1,3,5,7 are negative)
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2. Principal component analysis and Independent component analysis

Example

Eigenvalues of the same HYDICE scene

Eigenvalues of the corresponding eigenvectors in HYDICE
scene
What reduced dimension can we choose ?
Make the dimension reduction



Multivariate data analysis

2. Principal component analysis and Independent component analysis

Example

a b

c d

Mean value of original data (a), mean value of reconstructed data
with only 5 components (b), direct mean error reconstruction (c) and
sqrt of quadratic error reconstruction (d).
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2. Principal component analysis and Independent component analysis

Why reduce the dimension ?
Hughes phenomenon : the curse of dimensionality

I Complexity : total number of possible different numerical
values of the data hyperspectral image with 220 spectral
bands C = (216)200 ≈ 101060, for one image
C = 216 = 2562

I Needs the observation of 10530 × 10530 to be able to ”fill”
the space

I Usually, the observed image is sparse in the
multidimensional space

I Not adequate for the estimation of parameters (not enough
observations !)

I Some other phenomenon : the volume concentrates in the
”shell” of the distributions
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Why reduce the dimension ?

Hughes phenomenon : the curse of dimensionality
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2. Principal component analysis and Independent component analysis

Conclusion

??????
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2. Principal component analysis and Independent component analysis

Independent Component Analysis
Instead of UNCORRELATED, INDEPENDENT components

Uncorrelated
E [CiCj ] = 0

Independent
P(Ci ,Cj) = P(Ci)P(Cj)

Independent ⇒ Uncorrelated

For Gaussian random variables only

Independent ⇔ Uncorrelated
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2. Principal component analysis and Independent component analysis

Independent and uncorrelated

a b c

a: observations of uncorrelated and independent uniform
variables f (x1|x2) = f (x1)
b: observations of uncorrelated and dependent uniform
variables f (x1|x2) 6= f (x1)
c: observations of correlated uniform variables
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2. Principal component analysis and Independent component analysis

Independent Component Analysis

Model
x = As
A mixing matrix, s sources

Hypothesis

I The components of s (sources) are mutually independent
I The columns vectors of A are linearly independent
I At most one component is Gaussian
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2. Principal component analysis and Independent component analysis

Independent Component Analysis

Ambiguities and Problems

I The solution is defined up to a multiplicative constant
(undetermined energy) xj =

∑
i

(
aij
αi

)
(siαi)

I The variance is fixed to one for each component E [s2
i ] = 1

I The IC’s cannot be ordered by decreasing energy
I The solution is defined up to a permutation matrix

x = AP−1Ps
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2. Principal component analysis and Independent component analysis

Independent component analysis
EXAMPLE

a b

Independent uniform source data si (a) and (observed xi ) mixed data

with matrix A =

(
4 6
4 1

)
(b)(

x1
x2

)
=

(
4 6
4 1

)(
s1
s2

)
Goal : find the matrix A and the sources si from the observed xi
Knowledge : independence of the sources→ criterion
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2. Principal component analysis and Independent component analysis

Independent Component Analysis

Measures of independence

I CLT→ each linear combination of two independent r.v. is
”more Gaussian” than the r.v. themselves

I search for a matrix W′ ≈ A† such as s̃ = W′x
I INDEPENDENCE ↔ NON GAUSSIAN distribution for s̃

Each column wl of W gives an independent direction
The vector x is projected onto the directions wl , l = 1...L
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2. Principal component analysis and Independent component analysis

Independent Component Analysis

Measure of Nongaussianity with
Negentropy

I Gaussian variable has the largest
Entropy among all r.v. with same
variance
Entropy H(x) = −

∑
i p(xi) log p(xi)

Differential Entropy
H(x) = −

∫
px (ξ) log px (ξ)dξ

I Negentropy
J(x) = H(xGauss)− H(x))

I → maximize the Negentropy

Large entropy r.v. density (a)
and small entropy r.v. density
(b)
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2. Principal component analysis and Independent component analysis

Independent Component Analysis

Measure of Nongaussianity with
Kurtosis

I Gaussian variable has null Kurtosis
Kurtosis kurt(x) = E [x4]− 3(E [x2])2

I Positive Kurtosis : supergaussian
variable (ex Laplacian)

I Negative Kurtosis : subgaussian
variable (ex uniform)

I → maximize |kurt(x)| Gaussian, supergaussian
(Laplace) and subgaussian
(uniform) distributions
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2. Principal component analysis and Independent component analysis

Independent Component Analysis
FastIca algorithm with deflation approach
Centering and whitening the data(uncorrelated and white data)
Find iteratively directions vectors w such as the data projection
w′x maximizes the Nongaussianity (maximizes the kurtosis)

I ICA: find the most independent (most interesting)
directions

I PCA : find the principal (most energy) directions

EXAMPLE

Bivariate samples data. Principal direction and most interesting
direction
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2. Principal component analysis and Independent component analysis

IC’s of Indian site AVIRIS data

Mean image and five IC’s after dimension reduction with PCA
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2. Principal component analysis and Independent component analysis

Independent Component Analysis
Application : anomalies detection with ICA (A. Huck, ICIP 2008)

Model of IC’s for anomalies



Multivariate data analysis

2. Principal component analysis and Independent component analysis

Independent Component Analysis
Independent components of HYDICE scene estimated by the
algorithm

Usefull in finding ”anomalies”, which have ”peaky” distributions.
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2. Principal component analysis and Independent component analysis

Independent Component Analysis
Application : segmentation of a 12-component astronomical
image after PCA and after ICA (F. Flitti, GRETSI 2003)
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3. Metrics and clustering

Metrics

How to compare two pixels vectors ?
Algebraic distances

I Euclidian L2 distance ED(x1,x2) =
√∑

l(x1,l − x2,l)2

I L1 distance CBD(x1,x2) =
∑

l |x1,l − x2,l |

I Spectral angle SAD = cos−1
(

x1x2
‖x1‖‖x2‖

)
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3. Metrics and clustering

Metrics
Spectral angle
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3. Metrics and clustering

Metrics

How to compare two pixels vectors ?
Statistical distances

I Mahalanobis distance
MD(x1,x2) = (x1 − x2)′Σ−1(x1 − x2))

I Spectral information divergence
SID(x1,x2) =

∑
l p1,l log p1,l

p2,l
+ p2,l log p2,l

p1,l
with

pj,l =
xj,l∑
l xj,l

and Kullback Liebler pseudo-distance

KLD(x1,x2) = p1,l log p1,l
p2,l

SID and SAD often give very similar results.
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3. Metrics and clustering

Metrics
Statistical non parametric proposed distance

I Kendall’s TAU
I Rank correlation coefficient (non linear correlation)

Let (x1, x2) and (x̃1, x̃2) be two realizations of (X1,X2). The two
observed vectors are said to be concordant if
(x1 − x̃1)(x2 − x̃2) > 0, and discordant if (x1 − x̃1)(x2 − x̃2) < 0.
Kendall’s τ coefficient is defined as :

τ(X1,X2) = P
[
(X1 − X̃1)(X2 − X̃2) > 0

]
−P

[
(X1 − X̃1)(X2 − X̃2) < 0

]
(2)

(X̃1, X̃2) being a couple of continuous random variables, independent
of (X1,X2) and following the same probability law.
τ(X1,X2) = probability of concordance − probability of discordance
of the random variables X1 and X2.
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3. Metrics and clustering

Metrics

Statistical non parametric proposed distance
I Kendall’s TAU
I Rank correlation coefficient (non linear correlation)

Empiric estimator from N observations {xl1}l=1...N of X1 and N
observations {xk2}k=1...N of X2 :

τ̂ =
2

N(N − 1)

N−1∑
l=1

N∑
k=l+1

sign [(xl1 − xk1)(xl2 − xk2)] . (2)
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3. Metrics and clustering

Metrics

Statistical non parametric proposed concordance measure
I Kendall’s TAU
I Rank correlation coefficient (non linear correlation)
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3. Metrics and clustering

Metrics

How to compare two pixels vectors ?
Geometric distance

I Orthogonal projection distance
OPD(x1,x2) = x′1P2x1 + x′2P1x2, with
Pj = IL − xj(x′jxj)

−1x′j
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3. Metrics and clustering

Comparison of SAD and TAU
EXAMPLE reconstructed grism image

a b

c

a: Original image, b: distance map with TAU, c: distance map
with SAD
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3. Metrics and clustering

Comparison of SAD and TAU
EXAMPLE HYDICE with pannels

a b

a: Original image, b: distance map with TAU and SAD
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3. Metrics and clustering

Comparison of SAD and TAU

EXAMPLE HYDICE with pannels

c

c: comparison as a function of spectral bands number
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3. Metrics and clustering

Comparison of SAD and TAU

EXAMPLE discriminant power

a b

a: SAD, b: TAU
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3. Metrics and clustering

Comparison of many distances
EXAMPLE sensitivity to noise
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3. Metrics and clustering

Application to unsupervised classification

Clustering : group the data into homogeneous classes, without
knowing the classes spectra signatures.
EXAMPLE K-means
If K clusters, K inertia centers

Inertia
Inertia or dispersion of a set of objects xn with an inertia center
Gk : Ik = 1

N
∑

n d(xn,Gk )

Intra-class inertia in the total observation IC =
∑K

k=1 IkPk ; Pk is
the weight of the class k
Inter-class inertia in the total observation
IO =

∑K
k=1 Pkd(Gk ,G); Pk is the weight of the class k

I = IO + IC = cst → Maximize IO, minimize IC
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3. Metrics and clustering

Application to classification

EXAMPLE K-means

a b c

a: image in false colors
b: K-means with ED
c: K-means with TAU distance
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3. Metrics and clustering

Application to classification
EXAMPLE K-means, 6 classes

a b

c d

a: K-means with CBD, b: K-means with SAD, c: K-means with
ED, d: K-means with correlation
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3. Metrics and clustering

Application to classification
EXAMPLE K-means with TAU (top), and K-means with SAD
(bottom), 6 classes

a
a: Original image
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3. Metrics and clustering

Application to classification
EXAMPLE Other recent methods

a b c

a: image in false colors
b: Maximum Likelihood classification; c: Kernel SVM (support
vector machine) classification
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4. Object detection

General framework

Problem

Supervised detection
The target spectrum is known
Goal : detect all the pixels containing this target
→ find the ”closer” pixels (metric)
spectral variability → statistical models of the target and of
the background (non-target)

Unsupervised detection
The target signature is not known
Goal : find ”anomalous” pixels : different from the background
spectral variability → statistical models of the background
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4. Object detection

General framework

Supervised detection

Many algorithms, based on the Likelihood ratio test or on
subspace projection.
The final detector depends on

I The model for spectral variability
I The unknown parameters of the statistical model
I Considering or not full pixel detection or sub-pixel detection
I In the case of sub-pixel detection, the mixing model
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4. Object detection

General framework

Example of matched filter

Two hypothesis
H0: background, x ∼ N (µb,Σb)
H1: target, x ∼ N (µt ,Σt )

Likelihood ratio test

log [Λ] = log
[

P(x|H1)

P(x|H0)

]
>
<
η

Matched filter with Σt = Σb

DMF (x) = y = (µt − µb)′Σ−1x detection map
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4. Object detection

General framework

Example of matched filter
Two hypothesis
H0: background, x ∼ N (µb,Σb)
H1: target, x ∼ N (µt ,Σt )

Matched filter with Σt = Σb

DMF (x) = y = (µt − µb)′Σ−1x detection map

CFAR property
y follows a gaussian law→ False alarm probability
PFA =

∫∞
η p(y |H0)dy

False alarm probability with threshold η
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4. Object detection

General framework

Detection filters with parameters estimation
Example of Adaptive matched filter

Two hypothesis
H0: background, x ∼ N (0,Σ)
H1: target, x ∼ N (µt ,Σ)
µt = bs, b unknown
Generalized Likelihood Ratio Test

log [Λ] = log
[

maxb P(x; b|H1)

P(x|H0)

]
>
<
η

Adaptive Matched filter
DAMF (x) = y = (s′Σ−1x)2

s′Σ−1s
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4. Object detection

General framework

Unsupervised detection
Anomaly detection
Training data : {yj , j = 1..N} on background data, parameters
θ0 under H0
test data :{xi} with parameters θ0 or θ1 under H0 or H1

Two hypothesis
H0: background, x ∼ N (µ,Σ)
H1: target, x ∼ N (s,Σ)
s, Σ unknown

RX anomaly detector
DRX (x) = (x− µ̂)′Σ̂−1(x− µ̂)

Mahalanobis distance between tested x and estimated
background mean vector µ
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4. Object detection

Presentation of recent works

Anomalous component pursuit
Anomalies detection using projection pursuit with FastICA
deflation algorithm.

Data modeling

H0: rζ = bd
ζ ∼ N (m,Σ)

H1: rζ = bd
ζ + (td −m) ∼ N (td ,Σ)

After whitening

H0: zζ = bζ ∼ N (0L,1
H1: zζ = bζ + t

t = D−1/2UT (td −m
)
.
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4. Object detection

Presentation of recent works

Anomalous component pursuit
Anomalies detection using projection pursuit with FastICA
deflation algorithm.

Data modeling

rζ = bd
ζ + βζ

(
td −m

)
i .e. zζ = bζ + βζt , (3)

where βζ follows a Bernoulli distribution of parameter p:

βζ ∼ B(p) ,and p is small (4)

We search for a projector w

s = wT Z (5)
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4. Object detection

Presentation of recent works

Anomalous component pursuit
Anomalies detection using projection pursuit with FastICA
deflation algorithm.

Assumption

A2: w is parallel to t⇒
w locally maximizes the kurtosis.

Finally, the model can be extended to many anomaly classes
as follows :

rζ = bd
ζ +

Ja∑
j=1

βζ,j(td
j −m) i .e. zζ = bζ +

Ja∑
j=1

βζ,j tj , (6)
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4. Object detection

Presentation of recent works

Anomalous component pursuit

Algorithm : Estimation of one projector with FastICA
Choose an initial normalized vector w;
Until convergence do:

1. w← Ez
[
zg(wT z)

]
− Ez

[
g′(wT z)

]
;

2. w← P⊥Ww
3. w← w/‖w‖2

The initialization is made with RX algorithm, and we choose the
most anomalous pixel detected with RX.
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General framework

Problem

UNMIXING
I Geometrical approach
I Statistical approach
I Non-negative matrix

factorization : algebraic
approach

Why NMF ?

Linear mixing model:

R = X + N (7)

X = AS (8)

A: reflectances of endmembers
→ C1: non-negative
S: abundances of endmembers
→ C2: non-negative
→ C3: sum-to-one
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General framework

Problem

UNMIXING
I Geometrical approach
I Statistical approach
I Non-negative matrix

factorization : algebraic
approach

Why not NMF ?

Ill posed problem:

I Is the solution unique ?
I Which criterion to be

optimized ?
I Which algorithm (convexity) ?
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Basic formulation of NMF

Find two matrices Â and Ŝ such as:

X ' ÂŜ (7)

Minimize the reconstruction quadratic error (RQE):

RQE(A,S) = ‖R− AS‖2F (8)

→ Ensures C1 and C2 (needs normalization to enforce C3)
→ Does not ensure unicity of solution: needs regularization
→ Not convex for A and S simultaneously
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Advanced formulations of NMF

The objective function RQE is regularized :
f (A,S) = RQE(A,S) + λAfA(A) + λSfS(S)

SOME EXAMPLES
I Sum-to-one constraint : STU-NMF

fSTU(A,S) = RQE(A,S) + δ.STU(S),

STU(S) =
∑

i=pixels

(∑
j=endmembers sij − 1

)2

I Minimum-volume constraint : MVC-NMF
fMVC−NMF = fSTU(A,S) + λJ .J(A), J(A) = (J−1)!

2 V 2 [A]

I Minimum spectral dispersion constraint : MD-NMF (Minidisco)
fMD−NMF = fSTU(A,S) + λA.DA(A), DA(A) = L

∑
j=endmembers σ̂

2
Aj
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MOTIVATION

Consider abundance sparsity

I Most of the time, an observed pixel contains only few
mixed endmembers among the J contained in A

I The abundances should be either small (< 1
J ) or large

(> 1
J )
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MDMD-NMF

MOTIVATION

Consider abundance sparsity

I Most of the time, an observed pixel contains only few
mixed endmembers among the J contained in A

I The abundances should be either small (< 1
J ) or large

(> 1
J )

I Maximum dispersion of the abundances : obtain
abundances the most far from 1

J under STU constraint



Multivariate data analysis

5. Unmixing

Presentation of recent works

MDMD-NMF

FORMULATION OF MDMD-NMF

Criterion
Minimize the regularized function

fMDMD−NMF = fSTU(A,S) + λA.DA(A) + λS.DS(S) (9)

with

DS(S) = −J
∑

i=pixels

σ̂2
Si

= −
∥∥∥∥S− 1

J
IJI

∥∥∥∥2

F
(10)

In which σ̂2
Si

is the dispersion of the abundances for the pixel i
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MDMD-NMF
IMPLEMENTATION

Algorithm

I Alternate Gradient
I Multiscale Armijo/Lin based technique for µS and µA

S ← S− µS

(
ĀT (ĀS− X̄)− λS(S− 1

J
1JI)

)
(11)

A ← A− µA

(
(AS− X)ST + λA(A− 1

L
1L,LA)

)
(12)

I X̄ and Ā include the sum-to-one constraint:

X̄ =

[
X

δ · 11I

]
Ā =

[
A

δ · 11J

]
(13)
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MDMD-NMF
IMPLEMENTATION

Parameters
I Initialization with VCA
I Regularization parameters: δ = 1, λA = 0.01, λS = 0.01 · J
I Stop criterion: on the objective function RQE instead of

fMDMD−NMF → RQEk−100 < mink ′=0,...,99 RQEk−k ′

Let RQE locally increase in order to avoid local minima
I Estimation of J: find the best RQE

RQE as a function of J for real data
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Relationship with minimum volume methods

C3: the abundance vectors are localized in a J-simplex Ss,
which vertices are on the axes of the associated base.

In the abundances’ space, possible location of the abundance vectors
for J = 3
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Relationship with minimum volume

Data enclosing simplex

Abundance vectors location corresponding to (1) minimum volume
simplex with pure pixels, (2) no pure pixel, (3) all abundances equal to

1
J , and constraint on the dispersion of the abundances
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Results for simulated data

Data generation

I J endmembers randomly extracted from USGS library
I Abundances generated according to a Dirichlet density law
I Selection of I abundance vectors with maximum value

equal to a fixed threshold ξ
I ι is the ratio of null abundances
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Results for simulated data

MDMD-NMF results for J = 10, ξ = 0.7, ι = 0.8, I=1000, SNR=40 dB.
True and estimated spectra
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Results for simulated data

MDMD-NMF results for J = 10, ξ = 0.7, ι = 0.8, I=1000, SNR=40 dB.
Scatterplot



Multivariate data analysis

5. Unmixing

Presentation of recent works

Results for simulated data

As the number of endmembers J varies
Mean over 20 runs

AME: abundance mean error SME: spectral mean error
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Results for simulated data

As the number of endmembers J varies

SAD: spectral angle distance SID: spectral information divergence
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Results for simulated data

As the maximum abundance varies

AME: abundance mean error SAD: spectral angle distance
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Analysis of Cuprite data

−→

Ground truth available for the whole data



Multivariate data analysis

5. Unmixing

Presentation of recent works

Results for MDMD-NMF

Estimated spectra and
associated ones in USGS

library

USGS references SAD
1 Kaolin/Smect KLF508 85%K 4.8◦
2 Kaolin/Smect KLF511 12%K 2.6◦
3 Kaolin/Smect KLF508 85%K 4.2◦
4 Perthite HS415.3B 1.8◦
5 Muscovite IL107 5.2◦
6 Brookite HS443.2B 5.3◦
7 Nontronite SWa-1.a 3.6◦
8 Microcline HS151.3B 4.3◦
9 Corrensite CorWa-1 2.9◦

10 Quartz GDS74 Sand Ottawa 2.9◦
11 Goethite WS220 8.6◦
12 Goethite WS219 (limonite) 5.6◦
13 Dry Long Grass AV87− 2 5.1◦

Mean SAD 4.4◦

7 to 8 distinct references found
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Results for MVC-NMF

Estimated spectra and
associated ones in USGS

library

USGS references SAD
1 Smaragdite HS290.3B 33.7◦
2 Almandine WS475 7.1◦
3 Actinolite HS315.4B 12.3◦
4 Tumbleweed ANP92− 2C Dry 9.3◦
5 Hypersthene PYX02.h > 250u 42.4◦
6 Desert Varnish GDS141 15.0◦
7 Spessartine HS112.3B 15.5◦
8 Goethite WS219 (limonite) 15.5◦
9 Lepidolite NMNH105541 10.5◦

10 Siderite HS271.3B 19.3◦
11 Hematite GDS69.d 30− 45um 10.3◦
12 Azurite WS316 16.5
13 Opal WS732 16.1◦

Mean SAD 17.2◦

3 to 4 distinct references found
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Abundances maps obtained with MDMD-NMF

ξ1 = 0.97 ξ2 = 0.84 ξ3 = 0.76 ξ4 = 0.90

ξ5 = 0.83 ξ6 = 1.00 ξ7 = 0.99 ξ8 = 0.79
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Abundances maps obtained with MDMD-NMF

ξ9 = 0.72 ξ10 = 0.91 ξ11 = 0.81 ξ12 = 0.96

ξ13 = 0.96

Figure: Abundance maps given by MDMD-NMF and ξj for each
endmember j .
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Abundances maps obtained with VCA algorithm

ξ1 = 0.33 ξ2 = 0.17 ξ3 = 0.14 ξ4 = 0.19

ξ5 = 0.15 ξ6 = 0.13 ξ7 = 0.13 ξ8 = 0.16
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Abundances maps obtained with VCA algorithm

ξ9 = 0.12 ξ10 = 0.18 ξ11 = 0.16 ξ12 = 0.35

ξ13 = 0.23

Figure: Abundance maps obtained with VCA and ξj for each
endmember j .
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Conclusion

I MDMD-NMF performs well on synthetic data
I Number of endmembers
I Robust for ξ ≥ 0.7
I No numerical instabilities

I Real data:
I Good separability of the spectra
I Good identification power
I Estimated abundances in the domain of validity
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