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Data

Multivariate data : many observations of variate characters for
objects representative of a population.

objects : individuals
characters : variables

— statistics and analysis of the population

» For each person of a
population, observe
size, weight, eyes color,
hair color, number of
children, age, etc...

» For an acoustic signal,
observe time. freauency
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Data

» For each person of a The data D : usual

population, observe representation

size, weight, eyes color, di dy . d d
hair color, number of 3 i,
children, age, etc... 5 !

» For an acoustic signal, ) )
observe time, frequency i dy ]

» For each pixel of an N | . .. . 0w
image, observe the d, : character or variable / (for
wavelengths example age or size)
pixel = object i : index of the observed object or

wavelength = character individual
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Data

What can we do with that ?

> For each person of a Analysis of a population
population, observe

size, weight, eyes color,
hair color, number of
children, age, etc...

» For an acoustic signal,
observe time, frequency

» Which characters are relevant
(how many) ?
— Dimension reduction

» How to compare two different
objects ? — Metrics

» For each pixel of an » Can we group some objects

image, observe the togetherl? .
wavelengths — Classification
pixel = object » Can we detect an object in the

wavelength = character population ? — Detection
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Hyperspectral imaging
» Images collection
» Spectra collection

A plot of the brightness values
versus wavelength shows the
continuous spectrum for the
image cell, which can be used
to identify surface materials.

Relative Brightness

0.7
Wavelength (micrometers)

=] F
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Hyperspectral data

Collection of spectra Collection of images
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:

Hyperspectral data

Usual representation

Pixels (lines x columns)

\\
coldnns
Matrix Data 8
g X | |7 R 3
£ — 2|
- . (7)) y
Cube Matrix R: a pixel is a vector (R’ = D)

pixel = object or individual
wavelength = variable or character
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Hyperspectral data

Space representation

Rp1

/

one pixel vector
Raz

one wavelength image

Rp3

objects space
vector pixels

variables space
vector images

=

Rp2
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Multivariate statistical models
Let x be a random vector representing the pixels vectors,
p=E[x]
Gaussian density law
1 1 1 1
fa(x) = @rpRs[2 exp ( (X —p)E(x M))
Y : covariance matrix of the data, ¥ = E [xx']

4 4 ¥
500 observations 1.d. Ne(0, Is): Mol B, p= ( a ) Bl (a 2358 )

2-D scatterplot



Multivariate data analysis
L1A Data and Issues
L Data

Multivariate statistical models

Gaussian density law

Constant density levels are ellipsoids
Example : 2-D Normal
(X — )T (X — p) = cte (1) distribution
X1\ cov(xg,xe)
X= cp= 2l
X2 0102
linear correlation coefficient

2
Q " O s—( 91 po1o2 >
P p=0.4 p=0.8 - 2
po102 05

|X| = dety = (c102)2(1 — p?)
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Motivation

» The reflectance spectrum or the emitting spectrum is
representative of the observed material — object
identification

spectral signatures of variate materials
spectral libraries : ASTER : http://speclib.jpl.nasa.gov
USGS : http://speclab.cr.usgs.gov/spectral.lib04/spectra-lib04.html
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L Issues

Motivation

» The reflectance spectrum or the emitting spectrum is
representative of the observed material — object
identification

2-
OH €Oy
L2 2 SPOT XS Mulispectral Bands
123 _A_ Landsat TM Bands —S e
s[c[g[ Nearinfrared T Middle Infrared
@ |0 [‘(I Reflected
60
Vegetation Ny ~—
~_—"Dry soil
= (5% water) \u/ N
2 40
g Wet soil
H (20% water)
3
2 20
& Clear lake water
) o :
a e 04 06/08 10 12 14 16 18 20 22 24
04 06 08 10 12 14 16 18 20 22 24 Wavsiength {micromaters)
Wavelength (micrometers)
lon Fe

spectral signatures of variate materials
spectral libraries : ASTER : http://speclib.jpl.nasa.gov
USGS : http://speclab.cr.usgs.gov/spectral.lib04/spectra-lib04.html
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L Issues

Motivation

» The reflectance spectrum or the emitting spectrum
representative of the observed material — object

identification

Visible | Near Infrared |
Chlorophyll  Cell Structure Water
———— <

Middle Infrared

Grass
60 Walnut tree canopy
S 2 Fir tree
g 40 =
g f—
8 A Dry.yelowed
32 By

/\

T
N

Wavelength (micrometers)

0 " L s L s L L s L s
04 06 08 10 12 14 16 18 20 22 24

@
=]

Visible I Near Infrared | Middle Infrared

Granite
Concrete
Asphalt roof shingles

L—

Reflectance (%)
IS @
S S

)
=]

0
04 06 08 10 12 1.4 16 1.8 20 22 24
Wavelength (micrometers)

spectral signatures of variate materials
spectral libraries : ASTER : http://speclib.jpl.nasa.gov

USGS : http://speclab.cr.usgs.gov/spectral.lib04/spectra-lib04.html

is

Sample spectra
from the ASTER
Spectral Library.
ASTER will be one
of the instruments
on the planned
EOS AM-1
satellite, and will
record image data
in 14 channels
from the visible
through thermal
infrared wavelength
regions as part of
NASA's Earth
Science Enterprise
program.
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LIssues

Motivation

» The reflectance spectrum or the emitting spectrum is
representative of the observed material — object
identification

Sample spectra

. > from the ASTER

Visible] Near Infrared T Middle Infrared Spectral Library.
ASTER will be one

in 14 channels
from the visible
| T through thermal
0 infrared wavelength
regions as part of
04 06 08 1.0 12 14 16 1.8 20 22 24 \xopq Earth
Wavelength (micrometers) Science Enterprise

program.

)
=)

K60 Crants of the instruments
P on the planned

2 Concrete EOS AM-1

8 40 —— - satellite, and will
8 Asphalt roof shingles\/ ~ record image data
S

4

spectral sionatures of variate materials
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L Issues

Motivation

» The reflectance spectrum or the emitting spectrum is
representative of the observed material — object

identification

» — Quantitative estimation of the material abundances in

each pixel (sub-pixel)

o
=]

C=60%A+40%B

N
o

[N
o

Reflectance (%)

04 0608 1012 14 16 1.8 2.0 22 24
Wavelength (micrometers)
Example of a composite spectrum (C) that is a linear
mixture of two spectra: A (dry soil) and B (green vegeta-
tion).

Linear mixing model
X=ASor R=X+N

A pure materials
"endmembers” matrix

S abundances fractions for
each pixel and each
endmember

X, = Zj aj,-sj
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LIssues
:

Difficult points

— Spectral variability

Composition

Structure

Mixing

— Physical data models for corrections
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LIssues

Applications

Many applications :
» Military (detection),
» Agriculture (ecosystems)
» Geoscience
» Industrial (survey, mines),
» Astronomy
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LIssues

Applications

EXAMPLE

Reflectance, X10,000

10,000

8000

Mean for all regions

L) Infested coffon

/ - — Cotton

F Dry leaves

R~ — Infested leaves | 1

r [~ — Leaves

500 600 700 800 900 1000
Wavelength (nm)

Analysis of infested and healthy cotton plants reveals significant spectral differences, thus allow-

ing automated inspection.
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Applications
For launched ground monitoring applications such as
teledetection

. 5@ Py
e s ion s
GRATNG DIFFRACTION
(\ 3y ! e, GRATING

mnss-mamr

NTRM e sm

;"" BINGLE PIELIS
/ DISPERSED. SCANNNG
0 ERER s,

@ﬁ. > »/43&' ; /V EACHCROSS-TRAGK
¢ SIXELIE DSPEREED,
/ & SOSOENNNG
& B / SEQURED (2., 48)
WHISKBROOM SCANNER PUSHBROOMSCANNER

» Radiance spectra observed
» Needs to correct solar illumination

» Needs to correct atmospherical absorption

Lo(X Latm
Reflectance(\) = )\)T(()\)cose — ooyt (&)Cose L, observed

luminance, LgpandLam, resp. solar and atmospheric luminance, T(A)
atmospherical transmittance, 6 angle illumination.
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Applications

Réflectance

» Radiance spectra observed
» Needs to correct solar illumination
» Needs to correct atmospherical absorption

Lo(X Latm(A
Reflectance()\) = Lso,(/\)T(()\)cose - LSO/()\);'((A)COSB L, observed
luminance, LsgandLm resp. solar and atmospheric luminance, T()\)

atmospherical transmittance, ¢ angle illumination.
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LIssues

Spectral window

£ 100
s Absorbed
]
2
13
@
s
0
P w w
p i g
= 2@ 4 <
w Incoming from Sun = < =
(2] = 3
2 [l INFRARED MICROWAVE = [ &
3 |la = £ __sun (%)
3 = /|3 Emifted by Earth (RADAR) g — Earth =
gl 5 /|3 i} —
G| 5
T T T T T | 03 1 10 100 1 1
0Apm 1pgm  10um 100pum 1mm 1cm  10cm  1m um - um um um mm m
S scale) Wavelength
Visible [ Near Infrared | Middle Infrared

Transmittance

0.5 1.0 15 20 25
Wavelength (micrometers)
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LZ. Principal component analysis and Independent component analysis

PCA

Principal components: projections of the data on its mains
directions in the multidimensional space.

Main direction = direction for which the variance of the
projected data is maximum

maximum energy or maximum inerty

Blue (Bana 1)

=150

Green (Band 2)

Green (Band 2) Red (Band 3)

Red (Band 3)

300
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LZA Principal component analysis and Independent component analysis

PCA

Correlated image and uncorrelated images
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LZ. Principal component analysis and Independent component analysis

PCA
Center the data — X

Problem

First component : find a unit vector u such as X'u has
maximum dispersion (maximum energy)

Following components : find orthogonal unit vectors such as
X'u has maximum dispersion

Can be solved with Lagrangian multipliers formulation.
Solution
» First component: maximize £ = u;XX'uy — A(ujuy — 1)
» Following components: maximize
L = u,XX'up — A(upuz — 1) — dusuy
» Solution: XX'U = AU, U=(u; .. u)

Principal directions: eigenvectors of XX’
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PCA

Eigenvectors and eigenvalues values equation
XX'U =AU
XX~ E[xx'] =X  covariance matrix of the random vector x

PCA and KL
PCA =~ Karhunen-Loéve transform (statistical point of vue)
Principal components :

y =Ux

Property : y is uncorrelated, mean=0
The transform z = A—1/2U’ whitens the data.
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Example

PCA of a HYDICE scene. HYDICE: sensor with 1m — 60cm
resolution, 220 spectral bands and spectral resolution of 10 nm

a E w0 12 ° 0 o w5 wa 70 w5 a0 C T w0 & s w00 1@ @0 o

Mean of the data cube (a), scatterplot of the data cube for
wavelengths number 60 and 120 (b), and mean spectrum (c)
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L2. Principal component analysis and Independent component analysis

Example
First components of a HYDICE scene.

Mean of the data cube and 7 first PCA components
(components 1,3,5,7 are negative)
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LZ. Principal component analysis and Independent component analysis

Example

Eigenvalues of the same HYDICE scene

0 60 @ 10 120 140 160 1

Eigenvalues of the corresponding eigenvectors in HYDICE
scene

What reduced dimension can we choose ?
Make the dimension reduction
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Example

C

Mean value of original data (a), mean value of reconstructed data
with only 5 components (b), direct mean error reconstruction (c) and
sqrt of quadratic error reconstruction (d).
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Why reduce the dimension ?

Hughes phenomenon : the curse of dimensionality

» Complexity : total number of possible different numerical
values of the data hyperspectral image with 220 spectral
bands C = (2'%)200 ~ 101%6°, for one image
C =216 = 2562

» Needs the observation of 10230 x 10530 to be able to *fill”
the space

» Usually, the observed image is sparse in the
multidimensional space

» Not adequate for the estimation of parameters (not enough
observations !)

» Some other phenomenon : the volume concentrates in the
"shell” of the distributions
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LZA Principal component analysis and Independent component analysis

Why reduce the dimension ?
Hughes phenomenon : the curse of dimensionality

Fraction of the hypercube volume Fraction of the shell volume of an
Containing an hypersphere hypersphere

f=Vs()/Ve(@)=nP?/D2P11(D/2)) f=Ve@e)/Vsr)y=1-(1-¢/)P

O,

Limp_.f =0 Limg,,,f =1 Ve>0

= Volume concentrates = Volume concentrates
In the corners when D T in the shellwhen D T
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Conclusion
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Independent Component Analysis
Instead of UNCORRELATED, INDEPENDENT components

Uncorrelated
E[CiC] =0

Independent
P(Ci, Cj) = P(C)P(C))

Independent = Uncorrelated

For Gaussian random variables only

Independent < Uncorrelated
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Independent and uncorrelated

4 | . . 1 " " “ " i
a - 05 o a5 1 15 b ) 15 o 05 15 2 C &) [ %,

a: observations of uncorrelated and independent uniform
variables f(x1|x2) = f(xy)

b: observations of uncorrelated and dependent uniform
variables f(x1|x2) # f(xy)

c: observations of correlated uniform variables
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Independent Component Analysis

Model
X = As
A mixing matrix, s sources

Hypothesis

» The components of s (sources) are mutually independent
» The columns vectors of A are linearly independent
» At most one component is Gaussian
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Independent Component Analysis

Ambiguities and Problems

» The solution is defined up to a multiplicative constant
(undetermined energy) x; = _; <a/) (si))

» The variance is fixed to one for each component E[s?] = 1
» The IC’s cannot be ordered by decreasing energy

» The solution is defined up to a permutation matrix
x=AP 'Ps
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LZ. Principal component analysis and Independent component analysis

Independent component analysis

o1l o B a
a 1 02 04 i a8 1 b

Independent uniform source data s; (a) and (observed x;) mixed data
with matrix A = < j ? ) (b)

X1 B 4 6 S1
(e )-(55)(3)
Goal : find the matrix A and the sources s; from the observed x;
Knowledge : independence of the sources — criterion
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Independent Component Analysis

Measures of independence

» CLT — each linear combination of two independent r.v. is
"more Gaussian” than the r.v. themselves

» search for a matrix W ~ A such as § = W’'x
» INDEPENDENCE — NON GAUSSIAN distribution for §

Each column w; of W gives an independent direction
The vector x is projected onto the directionsw,, / =1...L
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Independent Component Analysis

Measure of Nongaussianity with
Negentropy

» Gaussian variable has the largest " o

Entropy among all r.v. with same
variance
a b

Entropy H(x) = —>_, p(x;) log p(x;)
Differential Entropy
H(x) = — [ px(&)log px(§)d¢ Large entropy r.v. density (a)
» Negentropy and small entropy r.v. density
_ (b)
J(x) = H(Xgauss) — H(x))
» — maximize the Negentropy
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L2. Principal component analysis and Independent component analysis

Independent Component Analysis

Measure of Nongaussianity with
Kurtosis

» Gaussian variable has null Kurtosis
Kurtosis kurt(x) = E[x*] — 3(E[x?])?

» Positive Kurtosis : supergaussian
variable (ex Laplacian) / \

» Negative Kurtosis : subgaussian = ~
variable (ex uniform)

» — maximize |kurt(x)| Gaussian, supergaussian

(Laplace) and subgaussian
(uniform) distributions
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Independent Component Analysis

Fastlca algorithm with deflation approach

Centering and whitening the data(uncorrelated and white data)
Find iteratively directions vectors w such as the data projection
w’'x maximizes the Nongaussianity (maximizes the kurtosis)

» ICA: find the most independent (most interesting)
directions
» PCA : find the principal (most energy) directions
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L2. Principal component analysis and Independent component analysis

IC’s of Indian site AVIRIS data

Mean imaae and five IC’s after dimension reduction with PCA
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LZA Principal component analysis and Independent component analysis

Independent Component Analysis
Application : anomalies detection with ICA (A. Huck, ICIP 2008)

frequency frequency frequency
diad Algorithm 1
Zgﬁd;ﬁc Inputs: HSTand Py,;
FastICA analysis;

1C values IC values 1 0 Select ICs with high normalized kurtosis and process each
one as follows:

(©)

frequency frequency frequency 1. Model the IC histogram with the mixture of a normal
and a uniform pdf. An EM algorithm is used to estimate

\ their parameters (Fig.1(c));

estimated estimated | ostimated 3 (Fig. 1)
orinilicad | e 2. Estimate the normalized abundance map from the IC
fE. by the mean of a piecewise linear transform depending

1 Ul 1 on the parameters of the estimated pdfs (Fig.1(d)):

© ® 3. Model the estimated abundance map with the mixture

of a half-normal and a uniform pdf whose parameters

Fig. 1. Histogram schemes (a) of a rare endmember abun- depend on the parameters estimated in step 1 (Fig.1(e));
dance map and (b).Of the assocnatlec'i .]C histogram; (C) 4. Finally, compute the threshold. The detection mask is
scheme of the IC histogram probabilistic model, (d) his- obtained thresholding the estimated normalized abun-
togram scheme of the estimated normalized abundance map, dance map (Fig.1(f));

(e) scheme of the normalized abundance map probabilistic

2 . Ouputs: Anomaly detection masks.
model and (f) scheme of the threshold computation; put 2 :
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LZ. Principal component analysis and Independent component analysis

Independent Component Analysis

Independent components of HYDICE scene estimated by the
algorithm

Usefull in finding "anomalies”, which have "peaky” distributions.
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Independent Component Analysis

Application : segmentation of a 12-component astronomical
image after PCA and after ICA (F. Flitti, GRETSI 2003)

Images initiales

Grouperment

Images regroupées
en3 sous ensembles
# Projection par
ACP ou ACI
Images réduites
\ # / Segmentation par-
e quadarbre
Carte de
segmentation
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L3A Metrics and clustering

Metrics

How to compare two pixels vectors ?
Algebraic distances

» Euclidian L, distance ED(x4, X>2) \/Z,(x1 | — X2,1)?
» L, distance CBD(X1 s X2) = ZI |X1,/ — X2,[|
» Spectral angle SAD = cos™' <&>

[ESENIESY]

s P, &

/

°

o P,
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L3. Metrics and clustering

Metrics
Spectral angle

Original image Target signatures Angle Spectral + décision

5
0 bonke

AS grounds

2

8 "\ﬁ%ﬁ 8

% A
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L3. Metrics and clustering

Metrics

How to compare two pixels vectors ?
Statistical distances

» Mahalanobis distance
MD(X1 , X2) = (X1 — Xg)lzi1 (X1 — Xz))
» Spectral information divergence
SID(x1,%X2) = 3, P4 ,/ogp2 + P, /ng2/ with

P = 2’73’(/_ and Kullback Liebler pseudo—distance
! P11

KLD(x1,X2) = p1, logp;
SID and SAD often give very S|milar results.
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Metrics

Statistical non parametric proposed distance
» Kendall’s TAU
» Rank correlation coefficient (non linear correlation)

Let (x1, x2) and (X1, X2) be two realizations of (X1, X2). The two
observed vectors are said to be concordant if

(X1 — X1)(X2 — X2) > 0, and discordant if (xy — X1)(x2 — X2) < O.
Kendall’s 7 coefficient is defined as :

(X1, Xe) = P {(X1 — X1)(X2 — Xz) > 0} -P {(X1 — X1)(Xe — Xp) < 0}
(2)

(X1, X2) being a couple of continuous random variables, independent
of (X1, X2) and following the same probability law.
7(X1, X2) = probability of concordance — probability of discordance

of the random variables X; and X.
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L3. Metrics and clustering

Metrics

Statistical non parametric proposed distance
» Kendall’s TAU
» Rank correlation coefficient (non linear correlation)

Empiric estimator from N observations {xj1},_; , of X; and N
observations {xx2},_1 n Of X5 :

2 N—1

N
PO NN =) Z Z sign[(xi1 — Xk1)(Xi2 — Xk2)] - (2)

I=1 k=I+1
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L3A Metrics and clustering

Metrics

Statistical non parametric proposed concordance measure
» Kendall's TAU
» Rank correlation coefficient (non linear correlation)

Pixel cible Pixels spectraux & tester

1 1
2 2
Réalisation < i f_g >
Réalisation .~z 7 o1l
] I
L L



Multivariate data analysis

L3A Metrics and clustering

Metrics

How to compare two pixels vectors ?
Geometric distance

» Orthogonal projection distance
OPD(X1 , X2) = XI1 Poxq + XI2P1X2, with
Pj =1l - Xj(X]/-Xj)_1X}
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Comparison of SAD and TAU

reconstructed grism image

os
oe
oz

e —

N v )

& ) .

a: Original image, b: distance map with TAU, c: distance map
with SAD




Multivariate data analysis

L3A Metrics and clustering

Comparison of SAD and TAU
EXAMPLE HYDICE with pannels

Reference : pannel 5

SAM

- . Spectral
. g angle

distance

Kendall

300

a 20 40 60 80 100 120 140 b

a: Original image, b: distance map with TAU and SAD
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L3. Metrics and clustering

Comparison of SAD and TAU

EXAMPLE HYDICE with pannels

Comparison SAD - tau as a function of the number of spectral bands

Spectral angle between
(o] targets and background

Concordance between
targets and backgroung

c: comparison as a function of spectral bands number
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Comparison of SAD and TAU

EXAMPLE discriminant power

0.7 1
0.61
0.8
0.5r
0.4r
3
) o 0.6
=
e 0.3r
A}
\
0.2k A 0.4 target 1 target 4
~. ——target 2 ——target5
0.1r ‘\_____________ —target 3 ---—- background
0 0.2 =
[¢) 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
a SNR (dB) b SNR (dB)

a: SAD, b: TAU
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L3A Metrics and clusteri

ng

Comparison of many distances
EXAMPLE sensitivity to noise

Pd

Moised data cube, Pla=10

09r
0.8
0.7r
06 F
=" 2 : E
/ L +  Tau
0.4 f__‘ér_—f~— AMF ]
e — A
(e chd ]
ed
02r i 1
o1k Tau d-sampled i
SAM
1 L 1 1 1 1 1 1 1
10 12 14 16 18 20 22 24 26 24

RSE ()
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L3. Metrics and clustering

Application to unsupervised classification

Clustering : group the data into homogeneous classes, without
knowing the classes spectra signatures.

K-means
If K clusters, K inertia centers

Inertia
Inertia or dispersion of a set of objects x,, with an inertia center
Gk: Ik = 3 >, d(Xn, Gk)

Intra-class inertia in the total observation /o = Ef:1 I Py; Py is
the weight of the class k

Inter-class inertia in the total observation

lo ="K, Pcd(Gk, G); Py is the weight of the class k
I=1Ip+Ilc=cst — Maximize lp, minimize I
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Application to classification

EXAMPLE K-means

a: image in false colors
b: K-means with ED
c: K-means with TAU distance
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LS. Metrics and clustering

Application to classification
EXAMPLE K-means, 6 classes

I
c W w0 s w20 d

a: K-means with CBD, b: K-means with SAD, ¢: K-means with
ED, d: K-means with correlation
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|—3. Metrics and clustering

Application to classification
EXAMPLE K-means with TAU (top), and K-means with SAD
(bottom), 6 classes

DA
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L3A Metrics and clustering

Application to classification
EXAMPLE Other recent methods

a: image in false colors
b: Maximum Likelihood classification; c: Kernel SVM (support

I T J P N [P o .
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LGeneral framework

Problem

Supervised detection

The target spectrum is known

Goal : detect all the pixels containing this target

— find the "closer” pixels (metric)

spectral variability =~ — statistical models of the target and of
the background (non-target)

Unsupervised detection

The target signature is not known

Goal : find "anomalous” pixels : different from the background
spectral variability — gtatistical models of the background
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LGeneral framework

Supervised detection

Many algorithms, based on the Likelihood ratio test or on
subspace projection.
The final detector depends on

» The model for spectral variability

» The unknown parameters of the statistical model

» Considering or not full pixel detection or sub-pixel detection
» In the case of sub-pixel detection, the mixing model
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L General framework

Example of matched filter

Two hypothesis

Ho: background, x ~ N (pp, Xp)
Hy: target, X ~ N (ut, Z+)
Likelihood ratio test

log [A] = log {P(x“_h )]

>
P(x|Ho)| <

Matched filter with X; = X,
Dye(X) =y = (ut — pp)' L' detection map
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L General framework

Example of matched filter
Two hypothesis
Ho: background, x ~ N (pp, Xp)
H;i: target, X ~ N (ut, X¢)
Matched filter with ¥; = ¥,
Dyr(X) = y = (ut — up)' X~ 'x detection map
CFAR property

y follows a gaussian law — False alarm probability
Pea= [, p(y|Ho)dy

04
02 /\
0 i ;
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Detection filters with parameters estimation

Example of Adaptive matched filter

Two hypothesis

Ho: background, x ~ A/(0, X)

H;i: target, x ~ N (ut, X)

¢ = bs, b unknown

Generalized Likelihood Ratio Test

maxp, P(x; b|H{)| >
P(X|Ho) <"

log [A] = log

Adaptive Matched filter
15 —1y)2
Danr(x) =y = &2
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Unsupervised detection

Anomaly detection

Training data : {y;,j = 1..N} on background data, parameters
Ao under Hy

test data :{x;} with parameters 6y or 64y under Hy or H;

Two hypothesis

Ho: background, x ~ N (u, X)
H;: target, x ~ N(s,X)

s, ¥ unknown

RX anomaly detector
Dpx(x) = (x — p)£ " (x - )

Mahalanobis distance between tested x and estimated
background mean vector p
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Anomalous component pursuit

Anomalies detection using projection pursuit with FastiICA
deflation algorithm.

Data modeling

HoZ Fe = bg NN(m,Z)

Hi: re=bd+(t—m) ~ N9 %)
After whitening

Hoi Zczbg NN(OLJ
H1Z ZCZbC—f-t

t=D"/2U7 (¢ — m).
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Anomalous component pursuit

Anomalies detection using projection pursuit with FastiCA
deflation algorithm.

Data modeling
re =b? + 5 (td—m) ie. zo=be+ Gt (3)
where j3; follows a Bernoulli distribution of parameter p:
B¢ ~ B(p) ,and p is small (4)
We search for a projector w

s=w'z (5)
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Anomalous component pursuit

Anomalies detection using projection pursuit with FastiICA
deflation algorithm.

Assumption

Ao: wis parallelto t =
w locally maximizes the kurtosis.

Finally, the model can be extended to many anomaly classes
as follows :

Ja Ja
re= bg + Zﬁc,j(tjd —-m) e z;=bc+ Zﬁc,jtj , (6)
j=1 J=1
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Anomalous component pursuit

Algorithm : Estimation of one projector with FastICA
Choose an initial normalized vector w;
Until convergence do:

1. w— E; [zg(W'2)] — E; [¢'(W2)];
2. w— Pyw
3. w—w/||wl2

The initialization is made with RX algorithm, and we choose the
most anomalous pixel detected with RX.
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Anomalous component pursuit

(a) (b)

Fig. 1. (a) Visual representation of the analyzed scene and (b) ground truth
detection mask. The target pixels are white, background pixels are black. Most
pancls are hard to perceive in (a). The circled anomaly in (a) is not included
in the ground truth mask (b)
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Anomalous component pursuit

Radencs

“opecraioana”

opecraioan

Fig. 2. Average background spectrum and 9 panel spectra.

Fig. 3. Detection ROC curves of ACP. ACE and RX. ACP and RX are
unsupervised detectors whereas ACE is supervised. These curves have been
obtained from the HYDICE datasat presented in Fig.1
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Anomalous component pursuit

- - " = -
m = TR
R s = -
-« = PR
- = - .

- - - - - »
- - " m
" e - - s -
- a m =

(@) (b)

Fig. 6. Target discrimination. (a) ACP “discrimination map” for i = 105,
10 spectral classes are found, one of them corresponds to the rock visible in
Fig.1(a), under the first row second column target. The other 9 correspond 10
9 pancl materials. (b) Semi-supervised segmentation of the "true” targets
only: the target pancls presenicd in Fig.1(b) are scgmented with the K-means
algorithm, with random initial conditions, SAD measure and 9 classes.
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Anomalous component pursuit

Spectral mean of the selected cuprite data scene
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Anomalous component

1 &
* s

pursuit

-

¢ ‘;

are black and the background is white

Fig. 9. First six anomaly detection masks of cuprite data. Here the anomalies

=
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Anomalous component pursuit

-

ig. 10, First six anomaly detection masks of cuprite data with one anomaly
ot Yo fiaraeran s MO0 RN

=
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Anomalous component pursuit

Anomalous Component direction w,,
nomalies

lass 1 anomalies

nomalous Component threshold

T RX fhreshold

Background vectors

Fig. 11.

Schematic representation of ACP process
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L General framework

Problem

UNMIXING
» Geometrical approach
» Statistical approach

» Non-negative matrix
factorization : algebraic
approach

Why NMF ?

Linear mixing model:

R=X+N (7)
X = AS 8)

A: reflectances of endmembers
— Cj1: non-negative

S: abundances of endmembers
— Cp: non-negative

— Cs3: sum-to-one
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L General framework

Problem

UNMIXING
» Geometrical approach
» Statistical approach

» Non-negative matrix
factorization : algebraic
approach

Why not NMF ?

[l posed problem:

» |s the solution unique ?

» Which criterion to be
optimized ?

» Which algorithm (convexity) ?
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Basic formulation of NMF

Find two matrices A and § such as:
X ~ AS (7)
Minimize the reconstruction quadratic error (RQE):
RQE(A.S) = ||IR — AS|2 (®)

— Ensures C; and C, (needs normalization to enforce Cs)
— Does not ensure unicity of solution: needs regularization
— Not convex for A and S simultaneously
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Advanced formulations of NMF

The objective function RQE is regularized

f(A,S) = RQE(A,S) + Aafa(A) + Asfs(S)
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Advanced formulations of NMF

The objective function RQE is regularized :
f(A,S) = RQE(A,S) + Aafa(A) + Asfs(S)
SOME EXAMPLES

» Sum-to-one constraint : STU-NMF
fstu(A,S) = RQE(A,S) + 6.STU(S),

2
STU(S) = Ei:pixels (Zj:endmembers Sij — 1)
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Advanced formulations of NMF

The objective function RQE is regularized :
f(A,S) = RQE(A,S) + Aafa(A) + Asfs(S)

» Sum-to-one constraint : STU-NMF
fstu(A,S) = RQE(A,S) + 6.STU(S),

STU(S) = Ei:pixels (Zj:endmembers Sij — 1)

» Minimum-volume constraint : MVC-NMF |
fuvc—nur = fsru(A,8) + A J(A),  J(A) = LGV V2 A]

2



Multivariate data analysis
L5. Unmixing

L Presentation of recent works

Advanced formulations of NMF

The objective function RQE is regularized :
f(A,S) = RQE(A,S) + Aafa(A) + Asfs(S)

» Sum-to-one constraint : STU-NMF
fstu(A,S) = RQE(A,S) + 6.STU(S),

2
STU(S) = E/‘:pixels (Zj:endmembers Sij — 1)

» Minimum-volume constraint : MVC-NMF oy
fuvc—nur = fsru(A,8) + A J(A),  J(A) = LGV V2 A]

» Minimum spectral dispersion constraint : MD-NMF (Minidisco)
fvp—nvF = fSTU(Aa S) + >‘A~DA(A)1 DA(A) = LZj:endmembers &E\,
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MDMD-NMF

MOTIVATION

Consider abundance sparsity

» Most of the time, an observed pixel contains only few
mixed endmembers among the J contained in A

» The abundances should be either small (< 13) or large
>3
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MDMD-NMF

MOTIVATION

Consider abundance sparsity

» Most of the time, an observed pixel contains only few
mixed endmembers among the J contained in A

» The abundances should be either small (< 13) or large
>3

» Maximum dispersion of the abundances : obtain
abundances the most far from 13 under STU constraint
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MDMD-NMF

FORMULATION OF MDMD-NMF

Criterion
Minimize the regularized function

fuomp—nmr = fsTu(A,S) + Aa.Da(A) + As.Ds(S)  (9)

with
112

Ds(S)=—J > 65 =-— Hs =Sl

i=pixels

(10)

F

In which 6—§i is the dispersion of the abundances for the pixel i
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MDMD-NMF

Algorithm

» Alternate Gradient
» Multiscale Armijo/Lin based technique for ug and pa

- - s—¢@(AﬁAs—m—wgs—ltm>un
A — Ay, ((AS —X)ST + \a(A - 1L1L,LA)91 2)

» X and A include the sum-to-one constraint:

X:[éﬁ”}A:[dﬁu} (13)
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MDMD-NMF

Parameters

» Initialization with VCA
» Regularization parameters: § =1, A, = 0.01, Ag = 0.01 - J
» Stop criterion: on the objective function RQE instead of
TMDMD—NME — RQEk_mO < mink/:07.._799 RQEk_k/
Let RQE locally increase in order to avoid local minima

» Estimation of J: find the best RQE

ROFE as a3 function of J for real data
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Relationship with minimum volume methods

Cs: the abundance vectors are localized in a J-simplex S,
which vertices are on the axes of the associated base.

In the abundances’ space, possible location of the abundance vectors
ford=3
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Relationship with minimum volume

Abundance vectors location corresponding to (1) minimum volume
simplex with pure pixels, (2) no pure pixel, (3) all abundances equal to
5, and constraint on the dispersion of the abundances
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Results for simulated data

Data generation

» J endmembers randomly extracted from USGS library
» Abundances generated according to a Dirichlet density law

» Selection of / abundance vectors with maximum value
equal to a fixed threshold ¢

» . is the ratio of null abundances
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Results for simulated data

Reflectance
Reflectance

0 50 100 150 200 0 50 100 150 200
Spectral band Spectral band

MDMD-NMF results for J =10, £ = 0.7, . = 0.8, I=1000, SNR=40 dB.
True and estimated spectra
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Results for simulated data

# Spectral band 200

0 0.2 0‘.4 016 08 1
# Spectral band = 50

MDMD-NMF results for J = 10, £ = 0.7, . = 0.8, I=1000, SNR=40 dB.
Scatterplot

u]
o)
I
ul
it
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Results for simulated data

As the number of endmembers J varies
Mean over 20 runs

0.05,
[T
I STU-NMF
0.04 [ IMiniDisCo 004
[ MD-NMF
508 I MDMD-NMF| 568
w w
= =
<< %]
0.02 0.02]
0.01 0.01
0 0
4 14 16 4 14 16

6 8 10 12
Number of endmembers

6 8 10 12
Number of endmembers

AME: abundance mean error SME: spectral mean error
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Results for simulated data

As the number of endmembers J varies

0.0 001
0.08
007 0.008
0.06
0.0086
A 005 a
@ 004 2
0.004
003
e 0.002
0.01
[ 0
4 6 8 10 12 14 16 4 6 8 10 12 14 16
Number of endmembers Number of endmembers

SAD: spectral angle distance  SID: spectral information divergence
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Results for simulated data

As the maximum abundance varies

BVCA
I STU-NMF
[ IMiniDisCo
[ MD-NMF

01

w o
= I MDMD-NMF' 2 o0s
<< (2]
005 0.06
0.04
0.02
0 0
1 09 08 07 06 1 09 08 07 06
Maximum abundance value Maximum abundance value

AME: abundance mean error SAD: spectral angle distance
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Analysis of Cuprite data

Ground truth available for the whole data
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Results for MDMD-NMF

Lt AT e et S
Mo | Mo [ | USGS references | SAD |
(P N T | Kaolin/Smect KLF508 85%K | 4.8°
8 e ] 2 = 2 | Kaolin/Smect KLF511 12%K | 2.6°
g e e 3 Kaolin/Smect KLF508 85%K | 4.2°
% st 1 % st 4 Perthite HS415.3B 1.8°
Byl ——— ] &g ——— 5 Muscovite IL107 5.2°
ST T 6 Brookite HS443.2B 5.3°
31 - [ 7 Nontronite SWa-1.a 3.6°
5 oL — = ol 8 Microcline HS151.3B 4.3°
P D 9 Corrensite CorWa-1 2.9°
N 10 | Quartz GDS74 Sand Ottawa | 2.9°
s
i /,M 1 f’jﬂﬁ_ 11 Goethite WS220 8.6°
T 12 | Goethite WS219 (limonite) | 5.6°
B L e 13 Dry_Long_Grass AV87 — 2 5.1°
Wavelength [um) Wavelength (pmj Mean SAD 4.4°

Estimated spectra and
associated ones in USGS Y- LR
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Results for MDMD-NMF

e, et S

1 ;,_,\ 1 T~ USGS references [ SAD |
z ameing | T 1 | Kaolin/Smect KLF508 85%K | 4.8°
i A s 2 Kaolin/Smect KLF511 12%K | 2.6°
s e e 3 Kaolin/Smect KLF508 85%K | 4.2°
§ st % st 4 Perthite HS415.3B 1.8°
Byl ——— ] &g ——— 5 Muscovite IL107 5.2°
ST T 6 Brookite HS443.2B 5.3°
i L 7 Nontronite SWa-1.a 3.6°
5 JL— £ L 8 Microcline HS151.3B 4.3°
o P 9 Corrensite CorWa-1 2.9°
O R S 10 | Quartz GDS74 Sand Ottawa | 2.9°
" pe " . 11 Goethite WS220 8.6°
P ! 12 | Goethite WS219 (limonite) | 5.6°
B L e 13 Dry_Long_Grass AV87 — 2 5.1°
Wavelength [um) Wavelength (pmj Mean SAD 4.4°

Estimated spectra and
associated ones in USGS
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Results for MDMD-NMF

1t — 1+
FanataN T~
ot — 2t
4 /,,/"'-\ 5 /"w\
'/—-—v»\ 1 '/—ﬂ—
. 4 Pk . 4r —_—
L sl £ st
2 £
w 51T w 5T T T
o e o ~
E ?7/, Ly | E ?7/—/ Y
El El
B gl 1 ® el
o« ol ,_/"'h\ | o« ol ,_’_p"\“
e B
10} _ — 10t
S T
11-/ 1 11--/_/
B el
12-/’/ 1 12-"/
e PRI
o 1 2 a3 b 1 =2

Wavelength (um)

Wavelength (pm)

Estimated spectra and

associated ones in USGS

3

[ USGS references [ SAD ]

1 Kaolin/Smect KLF508 85%K | 4.8°
2 Kaolin/Smect KLF511 12%K | 2.6°
3 Kaolin/Smect KLF508 85%K | 4.2°
4 Perthite HS415.3B 1.8°
5 Muscovite IL107 5.2°
6 Brookite HS443.2B 5.3°
7 Nontronite SWa-1.a 3.6°
8 Microcline HS151.3B 4.3°
9 Corrensite CorWa-1 2.9°
10 | Quartz GDS74 Sand Ottawa | 2.9°
11 Goethite WS220 8.6°
12 Goethite WS219 (limonite) 5.6°
13 Dry_Long_Grass AV87 — 2 5.1°

Mean SAD 4.4°
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Results for MDMD-NMF

W ] o [ [ USGS references [ SAD ]
7 | B e 1 Kaolin/Smect KLF508 85%K | 4.8°
i A e 2 | Kaolin/Smect KLF511 12%K | 2.6°
] e e 3 Kaolin/Smect KLF508 85%K | 4.2°
£ st 1 f s 4 Perthite HS415.3B 1.8°
& g ———— & g ———— 5 Muscovite IL107 5.2°
sl ] LT 6 Brookite HS443.2B 5.3°
31 ] 2. 7 Nontronite SWa-1.a 3.6°
5 L] = L 8 Microcline HS151.3B 4.3°
W o 9 a Coréeggite (SJoer\j/aO—1 2.9°
| ~ | [ —— 10 uartz 74 Sand Ottawa | 2.9°
" ://,_M 1 "r :j\___ 11 Goethite WS220 8.6°
12F 1 12r 12 Goethite WS219 (limonite) 5.6°
B L e 13 Dry_Long_Grass AV87 — 2 5.1°
Wavelength [um) Wavelength (pmj Mean SAD 4.4°

Estimated spectra and

associated ones in USGS 7 to 8 distinct references found
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Results for MVC-NMF

1 ™ e 1t —
N e g | | USGS references | SAD |
i_ st | 2 - 1 Smaragdite H5290.3B 33.7°
P oy 2 Almandine WS475 7.1°
o 14 3 Actinolite HS315.4B 12.3°
e B R 4 | Tumbleweed ANP92 — 2C Dry | 9.3°
A B 5 | Hypersthene PYX02.h > 250u | 42.4°
;5 =T % L 6 Desert_Varnish GDS141 15.0°
AN P 7 Spessartine HS112.3B 15.5°
ok A~ o 8 Goethite WS219 (limonite) 15.5°
e | 9 Lepidolite NMNH105541 10.5°
s g o 10 Siderite H$271.3B 19.3°
o] T 11 | Hematite GDS69.d 30 — 45um | 10.3°
b e 12 Azurite WS316 16.5
e 13 Opal WS732 16.1°
Wavelength (um) Wavelength (pm) Mean SAD 17420

Estimated spectra and
associated ones in USGS efer@nces
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Results for MVC-NMF

1 ™ e 1t —
N e g | | USGS references | SAD |
i_ st | 2 - 1 Smaragdite H5290.3B 33.7°
P oy 2 Almandine WS475 7.1°
o 14 3 Actinolite HS315.4B 12.3°
e B R 4 | Tumbleweed ANP92 — 2C Dry | 9.3°
A B 5 | Hypersthene PYX02.h > 250u | 42.4°
;5 =T % qldlt 6 Desert_Varnish GDS141 15.0°
AN P 7 Spessartine HS112.3B 15.5°
of T N o 8 Goethite WS219 (limonite) 15.5°
e | 9 Lepidolite NMNH105541 10.5°
s g o 10 Siderite H$271.3B 19.3°
o] T 11 | Hematite GDS69.d 30 — 45um | 10.3°
b e 12 Azurite WS316 16.5
e 13 Opal WS732 16.1°
Wavelength (um) Wavelength (pm) Mean SAD 17420

Estimated spectra and
associated ones in USGS eferances
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Results for MVC-NMF

1 ™ e 1t —
B R TN I e S | | USGS references | SAD
ol ] TN 1 Smaragdl_te HS290.3B 33.7°
P s 2 Almandine WS475 7.1°
o 1 o 3 Actinolite HS315.4B 12.3°
g osf e | s T 4 | Tumbleweed ANP92 —2C Dry | 9.3°
o AR B e 5 | Hypersthene PYX02.h > 250u | 42.4°
B bl | B LTS 6 Desert_Varnish GDS141 15.0°
% ol 7 % ol 7 Spessartine HS112.3B 15.5°
ol A~ ol 8 Goethite WS219 (limonite) 15.5°
e | 9 Lepidolite NMNH105541 10.5°
_f\-vf" - 10 Siderite HS271.3B 19.3°
o] T 11 | Hematite GDS69.d 30 — 45um | 10.3°
2 e 12 Azurite WS316 16.5
T | 13 Opal WS732 16.1°
Wavelength {umj Wavelength (pm) Mean SAD 1720

Estimated spectra and
associated ones in USGS
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Results for MVC-NMF

1 ™ e 1t —
B R TN I e S | | USGS references | SAD
ol ] TN 1 Smaragd|_te HS290.3B 33.7°
P s 2 Almandine WS475 7.1°
at B at i ;
3 Actinolite HS315.4B 12.3°
g osf e | s T 4 | Tumbleweed ANP92 —2C Dry | 9.3°
o AR B e 5 | Hypersthene PYX02.h > 250u | 42.4°
B bl | B LTS 6 Desert_Varnish GDS141 15.0°
% ol 7 % ol 7 Spessartine HS112.3B 15.5°
ol A~ ol 8 Goethite WS219 (limonite) 15.5°
e | 9 Lepidolite NMNH105541 10.5°
_f\-a*f’ - 10 Siderite HS271.3B 19.3°
o] T 11 | Hematite GDS69.d 30 — 45um | 10.3°
2 e 12 Azurite WS316 16.5
T | 13 Opal WS732 16.1°
Wavelength (um) Wavelength (pm) Mean SAD 17420

Estimated spectra and
associated ones in USGS 3 to 4 distinct references found
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Abundances maps obtained with MDMD-NMF

; W E
& =0.72 &0 =0.91

§11 = 0.81 §12 =0.96

¢13 =0.96

Figure: Abundance maps given by MDMD-NMF and ¢; for each
endmember j.
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Abundances maps obtained with VCA algorithm

& =0.33 & =017 &3 =0.14 &4 =019

&6 =0.13 & =013 & =0.16
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Abundances maps obtained with VCA algorithm

9 =0.12 £10=0.18 €11 =0.16 £10 = 0.35

£13 = 0.23

Figure: Abundance maps obtained with VCA and ¢; for each
endmember j.
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Conclusion

» MDMD-NMF performs well on synthetic data
» Number of endmembers
» Robust for £ > 0.7
» No numerical instabilities
» Real data:
» Good separability of the spectra
» Good identification power
» Estimated abundances in the domain of validity



	Table of contents
	1. Data and Issues
	Data
	Issues

	2. Principal component analysis and Independent component analysis
	3. Metrics and clustering
	4. Object detection
	General framework
	Presentation of recent works

	5. Unmixing
	General framework
	Presentation of recent works


