

White Dwarf Stars as Laboratories

S.O. Kepler Department of Astronomy

Stellar Evolution

Mass < 10 M_{sun} : White Dwarf

10 M_{sun} < Mass < 25 M_{sun} : Neutron Star

Mass > 25 M_{sun} : Black Hole

Planetary Nebula

Observed by the Hubble Space Telescope

Sirius and the White Dwarf

White dwarfs pulsate as they cool

Intensity Changes With Time

Multiperiodic, P=71s to 1500s, amp=4 mma to 300 mma

Pulsating White Dwarfs

 Internal structure of the white dwarf (SNIa progenitors)
 Cooling timescale
 Age of the oldest stars in our galaxy
 High energy and high density physics

Pulsating White Dwarfs

White Dwarfs ~ 6000 (doubled in 2004) Variable~ 115 (tripled in 2004)

 DOV T_{eff}=160 000-75 000K 10 known, M= -1
 DBV T_{eff}=25 000-22 000K 13 know, M= 8
 DAV T_{eff}=12 000K 92 known, M=12

Structure – SNIa progenitors

DBV GD 358

Pulsations ... Seismology

Pulsations/Seismology: Y₁₀ e Y₁₁

Pulsations are global

Brasópolis, MG

Whole Earth Telescope

Mass determination

UV spectra
 Optical spectra
 T_{ef} = 12 500K
 Massa = 1,1 M_{sol}

Mass distribution

SDSS

We fit all 1872 DA white dwarfs in SDSS

SDSS T_{eff} determination

SDSS log g determination

Transição de fase para cristal

A parte pontilhada corresponde a P(líquido quântico)/P(gás ideal) > 1. Efeitos quânticos iônicos são importantes à direita desta linha (θ =1).

DAV instability strip

Need high S/N spectra of variables and non-variables to refine Teff and log g Need to find more variables and non-variables to determine log g dependence

Most Massive Pulsating WD

17 light yr distant (40 quadrillion km)

BPM37093 – Diamond in the Sky!

Pulsations Present

Period in seconds

Crystallized or not?

BPM37093 in 1999

Super-Diamond?

Diamond

- C crystal
 - FCC
 - 3,08Å between atoms
 - 2 shared electrons
- T < 8000 K
- 10 K atm $< P < 1,2x10^8$ atm

BPM37093

- C crystal
- BCC
- 0,01Å between nucleons
- all electrons are free (degenerate)
- T = 7 million K
- P = 5x10¹⁸ atm
 - **\rho = 36 \text{ Ton/cm}^3**
 - E_{ions}> 2kT (quantized)
 - metallic quantum crystal

DBV instability strip

181 periodicities detected

Mass of each layer
M(R): Luminosity -> distance (1/10 uncertainty of parallax)
Rotation law(r) [splitting (k)]
Magnetic field limit (6000 G)
6th order harmonics and combinations
Nuclear reaction rate

•Quantity of ²² Ne dependes mainly on $\sigma [C^{12}(\alpha, \gamma)O^{16}(\alpha, \gamma)Ne^{20}(\alpha, \gamma)Mg^{24}(\alpha, \gamma)]$

Non Resonant Reaction

 $T > 10^8$ K and $\rho > 10^5$ g/cm³ Uncertainty is around 50%!

Mode identification with HST

GD358 mode identification HST

Bárbara Castanheira $\ell = 1$ for k=8 and 9 in 1996 probably $\ell = 1$ for other modes in 2000

GD358 mode identification HST

Bárbara Castanheira $\ell = 1$ for k=8 and 9 in 1996 probably $\ell = 1$ for other modes in 2000

PNNV – DOV instalibility strip

PG1159-035

PG1159-035: 101 pulsations detected

T_{eff} = 140 000K
 Total mass : (0.586 +/- 0.001) M _{Sun}
 M(R): Luminosity -> distance
 Mass of external layers
 no harmonics or linear combination (no convection zone)

PG1159-035 modes detected

Direct Method dP/dt

But period increases with time!

Most stable optical clock known

G117-B15A CFHT 3.6m

Most stable optical clock known

G117-B15A

Stable?

Time scale = $\frac{P}{\vdots} \cong 2.2 \text{ Gyr}$ $\frac{P}{P}$

Pulsars with dP/dt = 10^{-18} s/s have timescale 0.1 Gyr, but PSR B1885+09, with P=5.3 ms and dP/dt= 1.8×10^{-20} s/s has timescale of 9.5 Gyr.

Axions

Axions

$m_{ax} > 1 \ \mu eV$ or $\Omega_{ax} > 1$ tan β : ratio of the vacuum energy of the two Higgs fields

Gravitons?

Biesada & Malec (2002) Phys Rev D, 65 dP/dt: the string mass scale $M_s \ge 14,3 \ TeV/c^2$ for 6 dimensions for Kaluza-Klein gravitons. The limit is negligible for higher dimensions

Variable G?

Asteroseismological bound on *G/G* from pulsating white dwarfs Omar G. Benvenuto, Enrique García-Berro, and Jordi Isern PHYSICAL REVIEW D **69**, 082002 (2004)

Why do pulsation periods change?

$$\frac{\frac{P}{\dot{P}} = -a\frac{T}{\dot{r}} + b\frac{R}{\dot{R}}}{\frac{\dot{r}}{T} - \frac{\dot{R}}{R}}$$

DAV

•R = 9,6 x 10⁸ cm, dR/dt = 1 cm/yr •T_{nucleus}=12 million K, dT/dt = 0.05 K/year

$$\frac{\frac{R}{R}}{\frac{R}{R}} = 0,025 \quad \frac{T}{\frac{T}{T}} \implies \text{Cooling dominates!}$$

Photon vs neutrino emission

The Feynman diagram

Plasma neutrino (Weak interaction)

$$\hbar^2 w^2 = \hbar^2 w_p^2 + k^2 c^2$$

$$w_p^2 = \frac{4\pi n_e e^2}{m_e} \left[1 + \left(\frac{\hbar}{m_e c}\right)^2 \left(3\pi^2 n_e\right)^{2/3} \right]^{-\frac{1}{2}}$$

Two keys...

To excite the plasmon we must have $h\omega_o \leq kT$

The plasma frequency is much higher for a degenerate gas, and increases with increasing density....

Age of the disk: 9 ± 2 yr

Age of the Universe

Age of Universe =Age of disk + Halo + Formation of galaxy 9 ± 2 $1,5 \pm 1,5$ 1 ± 1 billion yr

$Age = (11, 5 \pm 2, 7)$ billion years

HST: Galaxies formed 1 Gyr after Big-Bang

Age of the Universe in 2004

10 years ago only white dwarfs gave age smaller than 15 billion years:

CMB - WMAP =
Hubble constant: 1/H =
Globular clusters:
Radiactive decay:
Cooling of white dwarf stars:
Distances to SNIa:

(13.7<u>+</u>0.2) Gyr (12 ± 1) Gyr (13.2 ± 1.5) Gyr (12.5 ± 3) Gyr (12.7 ± 0.7) Gyr 14.9± 1.4 (0.63/h)Gyr,A

Spectra of DA, DB and DO

Mode identification with SOAR

Find more variables

(V=18.6)

Detection of extra-solar planets

Spectroscopy: detection of radial velocity variation around the center of mass

G117-B15A

Jupiter around G117-B15A?

P=11.86 years, a=5.2 UA

Saturn around?

Search for planetary companions

monitoring changes in pulse arrival time due to motion of star around barycenter.

Orbit around center of mass with planetary companion

CCD vs PMT

CCD vs PMT

Measured Amplitude Difference

Change in Amplitudes

	Temperature			Difference in Amp		
DAV	Flux				2	юр
CCD	11500	12000	Rel/PMT	12500	Amplitude	% Rel/PMT
FI	$1.417e{+18}$	$1.528\mathrm{e}{+18}$	1.29	$1.623e{+}18$	0.134	-20.85
TBI2	$2.964e{+}18$	$3.215\mathrm{e}{+18}$	2.71	$3.427e{+}18$	0.143	-15.27
TBI	$3.544e{+18}$	$3.856e{+18}$	3.26	4.117e + 18	0.148	-12.43
TBI + BG39	$1.838e{+}18$	$2.015\mathrm{e}{+18}$	1.70	$2.163e{+}18$	0.161	-4.86
$TBI + CuSO_4$	$2.406e{+}18$	$2.638e{+}18$	2.23	$2.832e{+18}$	0.161	-4.90
PMT	$1.074e{+}18$	$1.182e{+18}$	1.00	$1.275e{+}18$	0.169	0.00
\mathbf{DBV}						
CCD	25500	26000	$\operatorname{Rel}/\operatorname{PMT}$	26500	Amplitude	% Rel/PMT
FI	1.128e + 19	$1.155e{+}19$	0.901	$1.183e{+}19$	0.0477	-14.57
TBI2	2.541e + 19	$2.606e{+}19$	2.032	$2.671e{+}19$	0.0497	-10.99
TBI	$3.130e{+}19$	$3.210\mathrm{e}{+19}$	2.503	$3.291\mathrm{e}{+19}$	0.0503	-9.95
TBI + BG39	$1.706e{+}19$	$1.752\mathrm{e}{+19}$	1.366	$1.797\mathrm{e}{+19}$	0.0516	-7.60
$TBI + CuSO_4$	$2.312e{+}19$	$2.374e{+}19$	1.851	$_{2.436\mathrm{e}+19}$	0.0522	-6.56
PMT	$1.246\mathrm{e}{+19}$	$1.282e{+}19$	1.000	$1.318\mathrm{e}{+19}$	0.0559	0.00
DOV						
CCD	130000	135000	$\operatorname{Rel}/\operatorname{PMT}$	140000	Amplitude	% Rel/PMT
FI	1.068e+21	1.132e + 21	0.743	$1.181e{+}21$	0.100161	-0.719
TBI2	$2.720e{+}21$	$2.883e{+}21$	1.893	$3.010\mathrm{e}{+21}$	0.100483	-0.400
TBI	3.153e+21	3.342e + 21	2.195	$3.488e{+}21$	0.100374	-0.508
TBI + BG39	1.761e + 21	1.867e + 21	1.226	$1.949e{+}21$	0.100471	-0.412
$TBI + CuSO_4$	2.422e+21	$2.568\mathrm{e}{+21}$	1.686	$2.681\mathrm{e}{+21}$	0.100523	-0.360
PMT	1.436e+21	$1.522\mathrm{e}{+21}$	1.000	$1.589\mathrm{e}{+21}$	0.100887	0.000

Amplitude vs Wavelength

CCD Data Analysis

