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A	par;cle	with	charge	q,	mass	m	and	velocity	v	in	an	external	E.M.	field	is	subject	to	the	
Lorentz	force	and	has	the	Eq.	of	mo;on	

The	E.M.	radia;on	emi6ed	by	a	par;cle	moving	in	a	sta;c	magne;c	field	is	called		
synchrotron	radia;on,	in	this	case	E=0		and	B=B0	from	the	first	equa;on	above	follows			
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Let	us	divide	the	mo;on	in	the	two	components	parallel	and	perpendicular	to	the	
magne;c	field	the	previous	Eq.	becomes:		
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which may be written 

4 
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P = - OTC/32 &J,. 

Here u T = 8 r r i / 3  is the Thomson cross section, and U, is the magnetic 
energy density, U, = B 2 / 8 n .  

6.2 SPECTRUM OF SYNCHROTRON RADIATION: 
A QUALITATIVE DISCUSSION 

The spectrum of synchrotron radiation must be related to the detailed 
variation of the electric field as seen by an observer. Because of beaming 
effects the emitted radiation fields appear to be concentrated in a narrow 
set of directions about the particle’s velocity. Since the velocity and 
acceleration are perpendicular, the appropriate diagram is like the one in 
Fig. 4.1 Id. 

The observer will see a pulse of radiation confined to a time interval 
much smaller than the gyration period. The spectrum will thus be spread 
over a much broader region than one of order we/2r .  This is an essential 
feature of synchrotron radiation. 

We can find orders of magnitude by reference to Fig. 6.2. The observer 
will see the pulse from points 1 and 2 along the particle’s path, where these 
points are such that the cone of emission of angular width -l/y includes 

It	follows	that	the	parallel	component	of	the	velocity	remains	constant	and,	since	the		
modulus	of	the	velocity	is	constant,	also	the	perpendicular	component	of	the	velocity		
will	be	constant	in	modulus.	The	solu;on	of	the	Eq.	of	mo;on	above	will	be	a	uniform		
circular	mo;on	on	the	plane	normal	to	the	magne;c	field	direc;on	with	a	transla;onal		
mo;on	along	the	magne;c	field	direc;on.	The	so-called	helical	mo;on.	The	frequency	
of	the	rota;on	(gyra;on)	is			

!B =
qB0

�mc



Total	power	emi6ed	by	synchrotron	
Let	us	consider	now	the	proper;es	of	the	power	emi6ed	by	the	charged	par;cle	moving	in	
a	constant	magne;c	field	B0.	The	mo;on	is	accelerated,	hence	we	cannot	define	a	steady	
iner;al	reference	frame.	We	define	an	“instantaneous”	rest	frame	of	the	par;cle	in	which	
(;me	by	;me)	the	par;cle	can	be	considered	non-rela;vis;c	(it	would	be	never	at	rest	
being	the	actual	mo;on	accelerated).	Under	this	hypothesis	in	the	instantaneous	rest	
frame	we	can	use	the	Larmor	formula,	the	emission	will	be	isotropic	with	no	varia;on	of	
the	par;cle’s	momentum.		

Using	“prime”	to	indicate	quan;;es	in	the	instantaneous	rest	frame	one	has	(for	energy	dW	
and	;me	dt	in	the	LAB	reference	frame)		

dW = �dW 0 dt = �dt0

Hence	the	power	emi6ed	is	an	invariant:		

dW

dt
=

�dW 0

�dt0
=

dW 0

dt0

NOTE:	the	isotropy	of	the	emission	in	
the	instantaneous	rest	frame	is	a	
fundamental	hypothesis	in	order	to	get	
the	invariance.	As	it	implies	no	change	of	
the	par;cle’s	momentum	dp’=0.			

The	Larmor	formula	gives	us	the	power	emi6ed	in	the	instantaneous	rest	frame	(so	in	
the	LAB	frame)		
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NOTE:	Using	the	proper;es	of	the	4-accelera;on	and	the	4-velocity	in	the	instantaneous	rest	
frame	we	can	rewrite	the	power	emi6ed	in	an	explicit	covariant	form			

P =
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dt
=

2q2

3c3
aµa

µ

It	is	useful	to	express	P	in	terms	of	the	components	parallel	and	perpendicular	to	the	
magne;c	field.	The	rela;on	that	links	accelera;on	in	the	LAB	and	instantaneous	rest	frames	
are		

a0k = �3ak a0? = �2a?

Using	these	rela;ons	we	can	rewrite	the	power	emi6ed	as			
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NOTE:	this	is	a	general	result	that	holds	
in	the	case	of	the	emission	due	to	
accelerated	charged	par;cles.	

In	the	par;cular	case	of	synchrotron	emission	as	we	saw	before	

ak = 0 a? = !Bv?



So	we	can	rewrite	the	total	power	emi6ed	by	synchrotron	as	
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α	is	the	pitch	angle,	formed	by	
par;cle’s	velocity	and	the	
direc;on	of	the	magne;c	field.	

r0 =
q2

mc2

Classical	radius	of	the	electron	

Integra;ng	over	all	possible	
pitch	angles	one	gets	the	
total	power	emi6ed	by	
synchrotron		
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That	is	commonly	wri6en	as	the	energy	lost	by	the	par;cle	per	unit	;me	over	
the	whole	frequency	range	of	the	synchrotron	emission		
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Rela;vis;c	beaming	
Consider	a	light	ray	that	arrives	at	the	origin	of	a	fixed	reference	frame	with	an	angle	θ.	The	
effect	of	Lorentz	transforma;ons	is	to	change	this	angle	θ	à	θ’	if	one	moves	to	a	reference	
frame	moving	with	some	velocity	respect	to	the	first	reference	frame.	This	angle	varia;on	
is	called	rela;vis;c	aberra;on.	To	be	more	quan;ta;ve	let’s	consider	the	laws	of	
transforma;on	of	veloci;es	in	special	rela;vity	(note:	we	are	interested	in	normal	
veloci;es	and	not	4-veloci;es).		

~u =
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dt0
Using	the	Lorentz	transforma;ons	for	space	and	;me	
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NOTE:	it	is	important	to	stress	the	factor	1/γ	that	enters	the	transforma;ons	for	angles	and	the	fact	that	changing	v	à-v	
and	u	à	-u	the	denominator	of	angle	transforma;ons	remains	unchanged.	From	these	facts	follows	that	light	rays	that	
are	received	or	emi6ed	isotropically	in	a	given	reference	frame	are	emi6ed	or	received	at	smaller	angles	in	a	reference	
frame	moving	respect	to	the	first	one.	This	effect	is	called	rela;vis;c	“beaming”	and	transforms	angles	as	θ’	àθ/γ	.	
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Figuw 4.3 
frrune K’. 

Relativistic beaming of mdiation emitted isotmpically in the rest 

4. Doppler Effect 

We have seen that any periodic phenomenon in the moving frame K’ will 
appear to have a longer period by a factor y when viewed by local 
observers in frame K. If, on the other hand, we measure the arrival times of 
pulses or other indications of the periodic phenomenon that propagate 
with the velocity of light, then there will be an additional effect on the 
observed period due to the delay times for light propagation. The joint 
effect is called the Doppler effect. 

In the rest frame of the observer K imagine that the moving source 
emits one period of radiation as it moves from point 1 to point 2 at 
velocity u. If the frequency of the radiation in the rest frame of the source 
is o’ then the time taken to move from point 1 to point 2 in the observer’s 
frame is given by the time-dilation effect: 

Now consider Fig. 4.4 and note I =  o h t  and d =  v At cose. The difference in 
arrival times AtA of the radiation emitted at 1 and 2 is equal to At minus 
the time taken for radiation to propagate a distance d. Thus we have 

Therefore, the observed frequency w will be 

277 w’ w= - = (4.1 1) 

This is the relativistic Doppler formula. The factor y - ’  is purely a 
relativistic effect, whereas the 1 -(u/c)cosB factor appears even classi- 
cally. One distinction between the classical and relativistic points of view 
should be mentioned, however. The classical Doppler effect (say, for sound 

Rest	system	of	the	emiMng	
par;cle	Isotropic	emission		

LAB	system	beamed	emission	with	
1/γ	aperture	of	the	emission	cone.			



In	the	case	of	light	emi6ed	by	a	source	which	is	running	away	from	an	observer	
at	rest																,																																(radial	velocity	of	the	source).		~v = 0 n̂ · ~u = �ur

D = �(u)(1 + ur) ' 1 +
ur

c
�0 = �0�(u)(1 + ur) = �0D(u)

Rela;vis;c	Doppler	effect	
To	discuss	the	rela;vis;c	Doppler	effect	let	us	consider	the	4-velocity	of	the	source	uμ,	of	
the	observer	vμ	and	the	4-momentum	of	photons	kμ.		

uµ = �(u)(1, ~u) vµ = �(v)(1,~v) kµ = (!,~k)

In	the	rest	system	of	the	source	uμ=(1,0)	and	kμuμ=ω0	,	being	kμuμ	a	Lorentz	invariant	we	
can	rewrite	for	both	the	source	and	the	observer	the	following	rela;ons	

!0 = �(u)!(1� n̂ · ~u) !0 = �(v)!(1� n̂ · ~v)

!0

!0
=

�(v)(1� n̂ · ~v)
�(u)(1� n̂ · ~u)

�0

�0
=

�(u)(1� n̂ · ~u)
�(v)(1� n̂ · ~v)

NOTE:	even	in	the	case	of	radial	velocity	zero,	with	a	non-zero	tangen;al	velocity	
(normal	to	the	line	of	sight)	the	observed	wavelength	will	be	increased.		

(~k = !n̂)



Because	of	the	rela;vis;c	beaming	the	radia;on	emi6ed	by	synchrotron	is	concentrated	in	
a	cone	and	the	observer	will	receive	the	emission	only	when	the	cone	axis	coincides	with	
the	line	of	sight	of	the	observer			

NOTE:	the	observer	receives	
the	emission	in	1	and	2	when	
the	cone	of	aperture	1/γ	
intersects	the	line	of	sight.		

The	distance	ΔS	between	1	and	2	can	be	determined	using	the	gyra;on	radius	a,	
the	geometry	tells	us	that				
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Figurn 6.2 Emission cones at variouS points of an accelerated particle's 
trajectory. 

the direction of observation. The distance As along the path can be 
computed from the radius of curvature of the path, a = As/AB. 

From the geometry we have A0 = 2/y,  so that As = 2 a / y .  But the radius 
of curvature of the path follows from the equation of motion 

AV 4 ym-  = - v x B ,  
A t  c 

Since (Av( = v A 0  and As = v At, we have 

A 0  qBsina 
As ymcv ' 

wB sin a ' 

-=- 

V a = -  

(6.8a) 

(6.8b) 

Note that this differs by a factor sina from the radius of the circle of the 
projected motion in a plane normal to the field. Thus A s  is given by 

2u 
yw, sin a 

As = (6.8~) 

The times t, and t, at which the particle passes points 1 and 2 are such 
that A s  = u(t,  - t , )  so that 

2 
y o B  sin a ' 

t , -  t ,x 

Let t f  and tt be the arrival times of radiation at the point of observation 

ΔS	

�S = a�✓ =
2a

�

The	gyra;on	radius	can	be	determined	from	the	Eq.	of	mo;on			

�m
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c
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q
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vB sin(↵)
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�S
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qBsin(↵)
=

v

!B sin(↵)
=

rL
sin(↵)

NOTE:	the	gyra;on	radius	
differs	from	the	Larmor	radius	
by	a	factor	1/sin(α)	(pitch	
angle).	The	Larmor	radius	rL	is	
the	gyra;on	radius	on	the	
plane	ortogonal	to	the	
magne;c	field.	



From	the	previous	rela;ons	one	gets		

�S =
2a

�
=

2v

�!B sin(↵)

The	;me	interval	during	which	the	par;cle	passes	between	the	points	1	and	2	is		
given	by		

�S = v(t2 � t1) (t2 � t1) =
2

�!B sin(↵)

Because	of	the	rela;vis;c	Doppler	effect	the	;me	interval	of	arrival	of	the	radia;on	to	the	
observer	is	squeezed	respect	to	the	;me	interval	of	emission			

(tA2 � tA1 ) = (t2 � t1)(1� �) =
2

�!B sin(↵)
(1� �)

1� � = 1� v

c
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2�2� � 1 �tA =
1

�3!B sin(↵)
=

Tgyr

�3

ΔtA	is	the	;me	dura;on	of	the	radia;on	pulse	(at	the	observer)	which	is	reduced	by	a	
factor	1/γ3	respect	to	the	gyra;on	period	of	the	par;cle.	The	scale	ΔtA	fixes	also	the	
characteris;cs	of	the	emi6ed	radia;on	which	will	show	all	the	frequencies	un;l	1/ΔtA	.	As	
we	will	analy;cally	show	below	the	cri;cal	synchrotron	frequency	is		

!c =
3

2
�3!B sin(↵) ⌫c =

3

4⇡
�3!B sin(↵)
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Let us summarize the results of this simplified treatment of synchrotron 
radiation: We have shown that 

1. The angular distribution from a single radiating particle Lies close 
(within l / y )  to the cone with half-angle equal to the pitch angle. 

2. The single-particle spectrum extends up to somethmg of the order of a 
critical frequency wc. More precisely, the spectrum is a function of 
w / w ,  alone. 

3. For power law distribution of particle energies with index p over a 
sufficiently broad energy range, the spectral index of the radiation is 
s = (p - 1)/2. 

6.4 SPECTRUM AND POLARIZATION OF SYNCHROTRON 
RADIATION: A DETAILED DISCUSSION 

Consider the orbital trajectory in Fig. 6.4, where the origin of the coordi- 
nates is the location of the particle at the origin of retarded time t’=0, and 
a is the radius of curvature of the trajectory. The coordinate system has 
been chosen so that the particle has velocity v along the x axis at time 
t ’ = O ;  tl is a unit vector along they axis in the orbital (x -y )  plane, and 

Figure 6 4  Geometry for pohnzation of synchrotron mdbtion. A t  t =  0, the 
particle wlocity is along the x axis, and a is the mdiw of curooture of the 
tmjectov. 

Synchrotron	spectrum	
In	general	the	emi6ed	spectrum	(energy	per	unit	frequency	and	solid	angle)	of	a	moving	
charge	can	be	expressed	as	(see	Rybicki	Lightman	chapter	3	Eq.	(3.13))		

dW

d!d⌦
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e2!2
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n̂ · ~r(t0)
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dt0

����
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and	t’	is	the	retarded	;me	that	takes	into	account	the	movement	of	the	source.	Let	us	
assume	that	in	t’=0	the	par;cle	is	at	the	origin	of	the	reference	system	(x=y=z=0)	with	
the	line	of	sight	along	x	and	the	magne;c	field	along	z	

n̂
~�

line	of	sight	

par;cle’s	velocity	

Aper	a	;me	t’	the	par;cle	has	covered	an	angle	vt’/a	
and	we	can	evaluate	the	vector	in	the	Eq.	above	
dividing	it	into	the	two	components	parallel	and	
perpendicular	to	the	magne;c	field	direc;on		
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hence	we	can	rewrite	the	Eq.	for	the	energy	emi6ed	as	
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We	can	separate	the	two	components		
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Being	rela;vis;c	par;cles	β≈1	(γ>>1)	the	observer	receives	the	signal	only	when	vt’/a≈0	
and	θ≈0.	By	series	expanding	the	Eq.	above	one	has		
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NOTE:	the	frequency	dependence	is	
contained	in	η	and	the	angular	dependence	
in	γθ,	as	a	consequence	of	the	rela;vis;c	
limit.	Moreover,	the	frequency	dependence	
is	always	through	the	ra;on	ω/ωc	.	
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Func;ons	present	in	the	expressions	above	are	the	modified	Bessel	func;ons	of	order	
2/3	and	1/3,	so	that	we	can	rewrite		
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We	can	now	integrate	these	rela;ons	over	the	solid	angle,	obtaining	in	this	way	the	
energy	emi6ed	per	unit	frequency	for	a	complete	orbit	on	the	plane	normal	to	the	
magne;c	field.		

d⌦ = 2⇡ sin(↵)d✓
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Figurn 6 5  Synchrotron emission fmm a part& with pitch angle a. Radiation 
is confined to the shaded solid angle. 

The infinite limits on the integral are convenient and permissible, because 
the integrand is concentrated to small values of A0 about a, of order l / y .  
The above integrals can be reduced further (see Westfold, 1959 for details), 
and we can write 

where 

(6.3 la) 

(6.3 1 b) 

(6.3 lc) 

and, again x = w / w , .  

During	one	such	orbit	the	emi6ed	radia;on	is	almost	
completely	confined	to	the	solid	angle	shown	shaded	
in	figure,	which	lies	within	an	angle	1/γ	of	a	cone	of	
aperture	twice	the	pitch	angle	α.	Thus:		
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The	integral	func;ons	are	non-zero	only	in	an	interval	Δθ	centered	around	α	with	a	
spread	of	1/γ.	Therefore	the	integra;on	limits	are	not	relevant	and	integrals	can	be	
put	in	a	simpler	form	

F (x) = x

Z 1

x

K5/3(⇠)d⇠

G(x) = xK2/3(x)

x =
!

!c

The	total	emi6ed	energy	per	unit	frequency	is	the	sum	of	the	two	contribu;ons	above,	
it	is	given	by	

✓
dW

d!

◆
=

p
3e2� sin↵

2c
F (x)

✓
dW

d!

◆

k
=

p
3e2� sin↵

2c
[F (x)�G(x)]

✓
dW

d!

◆

?
=

p
3e2� sin↵

2c
[F (x) +G(x)]

Spectnun and Pohrization of Synchrotron Radiation: A Detailed Discussion 179 
To convert this to emitted power per frequency we divide by the orbital 

period of the charge, T=2n/w,, 

The total emitted power per frequency is the sum of these: 

fi q3B sina 
2amc2 

P(w)  = 

(6.32a) 

(6.32b) 

(6.33) 

in agreement with our previous Eq. (6.18). The function F(x)  is plotted in 
Fig. 6.6. Asymptotic forms for small and large values of x are: 

x>> 1. 

(6.34a) 

(6.34b) 

To obtain frequency-integrated emission, or emission from a power-law 
distribution of electrons, it is useful to have expressions for integrals over 
the F and G functions. From Eq. 11.4.22 of Abramowitz and Stegun (1965) 
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Figure 46 Function describing the total power spectrum of synchtron emis- 
sion. Here x=o/o,. (Taken from Cinzburg, V. and Synnmtskii, S. l%S, Ann 
Rev. Asttvn. Astrophys., 3, 29%) 
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The	total	power	emi6ed	per	unit	
frequency	is	obtained	dividing	the	
energy	by	the	gyra;on	period	of	
the	par;cle	2π/ωB	.	
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Distribu;on	of	emiMng	par;cles	
Un;l	now	we	have	considered	only	the	case	of	a	single	emiMng	par;cle.	Obviously	this	is	
not	what	happens	in	astrophysics,	where	one	deals	always	with	distribu;on	of	par;cles.	
Therefore,	let	us	consider	many	par;cles	distributed	over	energy	as	a	power	law	with	
spectral	index	p>0		

dN

dE
/ E�p

In	this	case,	integra;ng	the	emi6ed	power	over	the	distribu;on	of	par;cles	one	gets	
the	general	result:		

P
tot

(!) =

Z

m

dE
dN

dE
P
E

(!) / !� p�1
2

Summary	
1.  The	angular	distribu;on	from	a	single	radia;ng	par;cle	lies	close	(within	1/γ)	to	

the	cone	with	half-angle	equal	to	the	pitch	angle	α.	
2.  The	single	par;cle	spectrum	extends	up	to	something	of	the	order	of	the	cri;cal	

frequency	ωc	,	being	a	func;on	of	ω/ωc	alone.	
3.  For	a	distribu;on	of	emiMng	(iden;cal)	par;cles	with	a	power	law	(energy)	

distribu;on	and	power	law	index	p,	the	emi6ed	radia;on	will	be	a	power	law	in	
frequency	with	a	power	law	index	(p-1)/2.	

NOTE:	it	can	be	easily	proven		
just	using	the	fact	that	P	is	
non-zero	only	around	ωc	



Coherent	Synchrotron	emission	
The	coherent	emission	can	be	realized	if	the	synchrotron	radia;on	emi6ed	by	different	
par;cles	has	some	phase	rela;on.	In	other	words	the	coherent	effect	is	realized	if	the	
electric	field	of	the	radia;on	emi6ed	by	different	par;cles	has	some	rela;on	that	links	their	
phases.	In	this	case	a	system	of	a	Z	par;cles	all	with	the	same	Lorentz	factor	γ	shows	an	
emission	which	is	Z2	;me	the	emission	of	a	single	par;cle.	Hence,	the	coherent	effect	can	
represent	a	strong	amplifica;on	of	the	emi6ed	signal.		
Let	us	consider	the	case	of	many	par;cles	each	with	the	same	Lorentz	factor	γ	and	different	
phases	αi	in	this	case	the	rela;on	for	the	wave	vector	will	be		
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repea;ng	the	analysis	done	before	we	can	rewrite	the	total	energy	emi6ed	per	unit	
frequency	and	solid	angle	as	

Being	the	first	factor	the	emission	produced	by	one	
par;cle.	The	term	S(Z,ω)	takes	into	account	the	
interference	among	the	electric	fields	of	the	radia;on	
emi6ed	by	different	par;cles.		
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The	two	simplest	cases	are:		
	
(i)  coherent	emission	–	when		the	phases	are	all	the	same	αi=const;		

(ii)  incoherent	emission	–	in	the	case	in	which	αi	are	randomly	distributed	in	the	
interval	(0,2π)	without	any	rela;on	among	them.		

Coherent	emission	 S(Z,!) = Z2

Incoherent	emission	 S(Z,!) = Z

This	rela;ons	can	be	proved	through:		
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X-ray	filaments	observed	in	SNRs	and	
produced	by	synchrotron	emission	of	
high	energy	electrons.	Typical	size	of	
the	observed	filaments	is	at	the	level	
of	10-2	parsec.	These	observa;ons	
lead	to	the	conclusion	of	an	
amplified	magne;c	field	in	the	SNR	
environment	at	the	level	of	100	μG.	
(Important	insight	for	models	of	CR	
accelera;on	in	SNR).		



  

Direct Compton
Let’s start by looking at the momentum and energy of the photon and electrons. 
In Thomson scattering the photon has no momentum (classical electrodynamics). 
However, from quantum mechanics we do know that a photon has a momentum. 
This means that any scattering process cannot be purely elastic since the electron will
recoil due to the momentum of the photon.  

The photon has initial energy       and final energy      .ϵ ϵ
1

The photon has initial momentum           and final momentum         .ϵ/c ϵ
1
/c

The electron has initial energy mc^2  and final 
energy E/c.
The electron has initial momentum 0 
and final momentum p.

Inverse	Compton	ScaAering	
Thomson	sca6ering	
This	is	realized	when	low	energy	photons,	with	ε<<mec2,	sca6er	on	electrons	at	rest.	The	
process	is	elas;c	and	incident	photons	can	be	treated	as	a	con;nuous	E.M.	wave.	The	
cross	sec;on	per	solid	angle	of	photon’s	emission	is	given	by:	

Compton	sca6ering	
Releasing	the	hypothesis	of	low	energy	photons,	if	ε≥mec2		the	process	is	not	anymore	
elas;c	and	should	be	treated	as	a	par;cle	sca6ering	(photon	on	electron	at	rest).	Using	
the	conserva;on	of	energy	and	momentum		one	has		

�1 � � = �c(1� cos ✓)

d�

d⌦
=

r20
2

✏21
✏2

✓
✏

✏1
+

✏1
✏
� sin2 ✓

◆
�c =

h

mc

✏1 =

✏

1 +

✏
mc2 (1� cos ✓)

✏1 = ✏
d�T

d⌦
=

1

2

r20(1 + cos

2 ✓) �T =

8⇡

3

r20 r0 =

e2

mc2

Klein-Nishina	cross	sec;on.	



  

Example: 

The rest mass energy of an electron is 511 keV. 

Therefore if the photon in step 2 is still in the Thomson limit (after gaining a 
factor gamma in energy), then it can gain another factor gamma in energy in 
step 3. 

For example, say that gamma = 10 (i.e., electron velocity is ~0.95 c). 
Initial photon energy is 0.003 keV (visible light)
After one scattering the photon has energy of the order 0.03 keV. Since 
0.03 keV << 511 keV we are still in the Thomson limit. We boost the photon 
again (Step 3) and the final energy will then be 0.3 keV (soft X-rays) 

This	condi;on	corresponds	to	the	possibility	of	trea;ng	the	sca6ering	as	in	the	case	of	
Thomson	in	the	rest	frame	of	the	electron.		
Let	us	call	K	the	LAB	frame,	in	which	the	electron	has	high	energy	and	the	photon	low	
energy,	and	K’	the	reference	frame	in	which	the	electron	is	at	rest.		

  

Inverse Compton

Step 1: Photon and e- in lab frame → e- rest frame

Step 2: Photon and e- interact in e- rest-frame

Step 3: Back to the lab frame

  

Inverse Compton

Step 1: Photon and e- in lab frame → e- rest frame

Step 2: Photon and e- interact in e- rest-frame

Step 3: Back to the lab frame

The	Inverse	Compton	Sca6ering	(ICS)	is	a	process	
for	which	a	moving	electron	has	sufficiently	
kine;c	energy	that	can	be	transferred	to	a	low	
energy	photon	considerably	increasing	its	energy.	
Here	we	will	always	assume	that	the	energy	of	
the	photon	in	the	rest	system	of	the	electron	is	
much	less	than	the	rest	mass	of	the	electron		
	

�✏ ⌧ mec
2



Recalling	the	Lorentz	transforma;ons	of	the	Doppler	ship	formula	and	for	angles:	

where	the	last	equality	holds	in	the	rela;vis;c	limit	β≈1.	The	minimum	value	of	ε1	is	in	
the	case	of	θ=0	and	θ1=π	when	the	photon	sca6ers	from	behind	on	the	electron	(tail-
on).	The	minimum	energy	of	the	sca6ered	photon	will	be		

NOTE:	The	ICS	converts	low	energy	photons	to	high	energy	ones	by	a	(large)	factor	γ2.	
Kinema;cal	effects	alone	limit	the	energy	a6ainable,	from	the	conserva;on	of	energy	
we	can	write	ε1<γmc2	+	ε.	Fixing	ε	and	leMng	γ	become	large,	we	see	that	photon	
energies	larger	than	γmc2	cannot	be	obtained.		

NOTE:	the	angles	θ’	and	θ’1	are	typically	of	the	order	of	π/2.	The	maximum	value	that	
the	energy	of	the	final	photon	can	acquire	corresponds	to	θ=π	and	θ1=0	the	photon	is	
sca6ered	along	the	electron	velocity	vector	(head-on)	and			
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Power	for	single	sca6ering	
Before	we	considered	a	single	photon	sca6ering	off	a	single	electron.	Here	we	consider	the	
case	of	a	given	isotropic	distribu;on	of	photons	sca6ering	off	a	given	isotropic	distribu;on	
of	electrons.		
Let	n(p)	the	photons	phase	space	distribu;on,	which	is	a	Lorentz	invariant.	Let	v(ε)dε	the	
density	of	photons	having	energy	in	the	range	(ε,ε+dε),	v	and	n	are	related	by			

v(✏)d✏ = n(p)d3p

Recalling	that	d3p	transforms	as	energy	under	Lorentz,	it	follows	that	v(ε)dε/ε	is	a	
Lorentz	invariant	
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✏
=

v0(✏0)d✏0

✏0

The	total	power	sca6ered	in	the	electron	rest	frame	can	be	found	using	the	Thomson	
cross	sec;on	as	
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Being	v’dε’	the	number	density	of	incident	photons.	Using	the	hypothesis	γε	<<	mc2	we	can	
neglect	the	energy	change	of	the	photon	in	the	electron’s	rest	frame	assuming	ε’1=ε’.	
Moreover,	we	also	know	that	the	power	emi6ed	is	a	Lorentz	invariant	dE1/dt=dE’1/dt’		
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Since																																																	we	can	rewrite	the	expression	above	with	all	quan;;es	
wri6en	in	the	LAB	frame		
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In	the	case	of	an	isotropic	distribu;on	of	photons	one	has		
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NOTE:	Uph	is	the	energy	density	of	
ini;al	photons	(before	sca6ering).	

dE1/dt		is	the	power	contained	in	the	sca6ered	radia;on.	To	calculate	the	energy	loss	
rate	of	the	electrons,	we	have	to	subtract	the	ini;al	power	of	the	radia;on	before	
being	sca6ered		

Therefore	the	net	power	lost	by	electrons	and	thereby	converted	into	radia;on	is		
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Being	γ2	–	1=γ2β2	 ✓
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NOTE:	when	the	energy	transfer	in	the	electron’s	rest	frame	cannot	be	neglected	
(Klein-Nishina	regime)	the	Eq.	above	becomes	(Blumenthal	and	Gould	1970)		
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<ε2>	and	<ε>	mean	values	
integrated	over	Uph.	

NOTE:	recalling	the	total	power	emi6ed	by	synchrotron		
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the	radia;on	losses	due	to	synchrotron	emission	
and	ICS	are	in	the	same	ra;o	as	the	magne;c	
field	energy	density	and	photons	energy	density.	

NOTE:	in	the	case	of	a	distribu;on	of	electrons	N(γ)	the	total	power	emi6ed	by	ICS	is		
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NOTE:	the	synchrotron	emission	can	be	interpreted	as	an	ICS	on	virtual	photons	of	the	
magne;c	field,	just	interpre;ng	UB	as	the	energy	density	of	such	virtual	photons.		



Inverse	Compton	Sca6ering	Spectra	
The	spectrum	of	photons	emi6ed	by	ICS	depends	on	both	the	ini;al	photon	spectrum	and	
electrons	distribu;on.	However,	it	is	only	necessary	to	determine	the	spectrum	for	the	
sca6ering	of	photons	of	a	given	energy	ε0	off	electrons	of	a	given	energy	γmc2,	because	the	
general	spectrum	can	then	be	found	by	averaging	over	the	actual	distribu;ons	of	photons	
and	electrons.	We	consider	here	cases	in	which	both	electrons	and	photons	have	isotropic	
distribu;ons;	the	sca6ered	photons	are	then	also	isotropically	distributed,	and	it	only	
remains	to	find	their	energy	spectrum.	
As	before	we	consider	the	case	of	Thomson	sca6ering	in	the	rest	frame	of	the	electron	
(γε<<mc2).	In	addi;on	we	assume	that	the	sca6ering	in	the	electron’s	rest	frame	is	also	
isotropic,	i.e.				
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It	is	useful	the	use	of	the	flux	I(ε)	based	on	photon	number	rather	than	energy.	The	
number	of	photons	crossing	an	area	dA	in	the	;me	dt	within	the	solid	angle	dΩ	in	the	
energy	range	(ε,ε+dε)	is		

dN = I(✏)dAdtd⌦d✏

Suppose	that	the	isotropic	incident	photons	are	mono-energe;c		

I(✏) = F0�(✏� ✏0)



Let	us	determine	the	sca6ering	of	a	beam	of	electrons	with	density	N,	energy	γmc2	
traveling	along	the	x-axis.	The	incident	intensity	in	the	rest	frame	K’	is			

I 0(✏0) = F0

✓
✏0

✏

◆2

�(✏� ✏0) It	follows	from	the	invariance		
I 0(✏0)

✏02
=

I(✏)

✏2

Recalling	the	transforma;ons		
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The	emission	func;on	or	emissivity	in	K’,	i.e.	number	of	emi6ed	photons	per	unit	volume,	
energy	and	steradian	is	given	by	

Where	we	have	used	the	Thomson	condi;on	ε’1=ε’.		Using	the	expression	for	I(ε,μ)	into	
the	Eq.	above	one	has	
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Let	us	now	come	back	to	the	LAB	frame.	As	for	the	intensity	also	J/ε2	is	an	invariant,	hence	
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and	J=0	otherwise,	we	have	used	the	transforma;ons	
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The	result	above	holds	in	the	case	of	a	beam	of	electrons.	To	obtain	the	more	general	
result	of	an	isotropic	distribu;on	of	electrons	we	should	integrate	over	the	angle	θ	
(μ=cos(θ))	between	the	electron	and	photon	momenta.	
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NOTE:	J(ε1,μ1)	depends	on	μ1	only	through	the	condi;on	on	ε1	,	being	constant	if	the	
condi;on	is	realized	or	zero	if	not	(see	Eq.	above).	The	number	of	emi6ed	photons	per	unit	
volume	and	steradian	for	an	isotropic	distribu;on	of	electrons	is	given	by	
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In	figure	J(ε1)	is	plo6ed	for	different	values	of	β	as	
labeled.	For	small	β	the	curves	are	symmetrical	about	
the	ini;al	photon	energy	ε0.	As	β	increases	J(ε1)	
extend	towards	energies	>>	ε0	,	expressing	the	
upward	ship	of	the	average	energy	of	the	sca6ered	
photons.	For	β	near	1	(γ>>1)	it	is	convenient	to	rescale	
the	energy	variable	as		

x =
✏1

4�2
✏0

The	emission	func;on	(for	isotropic	photons)	is		

J(✏1) =
3N�TF0

4✏0�2

2

3
(1� x) 0 < x < 1

Using	the	expression	for	J(ε1)	it	is	easy	to	prove	the	
following	rela;ons	Z 1

0
d✏1J(✏1) = N�TF0

Z 1

0
d✏1(✏1 � ✏0)J(✏1) = N✏0F0

4

3
�T �

2�2

The	first	result	expresses	the	rate	of	photon	sca6ering	per	unit	volume	and	steradian,	
hence	it	is	nothing	but	the	conserva;on	of	the	number	of	photons	upon	sca6ering.		
The	second	result	is	the	average	increase	in	photon	energy	per	sca6ering,	which	is	
nothing	but	the	energy	lost	by	the	electrons	as	determined	before:		

N✏0F0 = cUph

Z 1

0
d✏1(✏1 � ✏0)J(✏1) = N✏0F0

4

3
�T �

2�2 =
4

3
c�T �

2�2Uph



Electrons	distribu;on	
Let	us	consider	a	more	realis;c	case	in	which	the	distribu;on	of	electrons	is	a	power	law	in	
Lorentz	factor	(energy)		

N(�) = N0�
�p

Determining	the	total	power	emi6ed	per	unit	volume	and	(photon)	energy			

dE

dV dtd✏1
= 4⇡J(✏1)

Referring	to	the	case	of	rela;vis;c	par;cles	γ>>1	one	has	

Changing	integra;on	variable	
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The	same	result	of	synchrotron	emission.	



Synchrotron	self	Compton	
If	the	energy	density	of	photons	emi6ed	by	synchrotron	is	comparable	with	the	energy	
density	associated	to	the	magne;c	field	the	mechanism	of	Synchrotron	Self	Compton	(SSC)	
becomes	efficient.	This	mechanism	implies	an	ICS	interac;on	of	rela;vis;c	electrons	with	
photons	produced	by	the	same	electrons	through	synchrotron.	The	energy	of	photons	
emi6ed	by	SSC	is	typically	in	the	γ-ray	band.		



  

Sunyaev Zel'dovich Effect

  

Sunyaev Zel'dovich Effect
Sunyaev	Zel’dovich	effect	



Proton-Proton	interacFons	
We	discuss	now	the	process	of	proton-proton	interac;on	that	gives	rise	to	the	produc;on	
of	neutral	pions	that	in	turn	decay	feeding	the	galac;c	gamma	ray	background.	The	process	
at	hand	is	the	interac;on	of	cosmic	rays	protons	with	the	protons	of	the	interstellar	
medium	that	can	be	considered	at	rest	and	indicated	with	H		
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To	fix	the	energe;c	scale	of	the	problem	let	us	start	from	the	threshold	for	this	reac;on,	
that	can	be	computed	(using	the	defini;on)	as	the	energy	in	the	LAB	frame	of	the	incident	
proton	needed	to	produce	the	final	par;cles	at	rest	in	the	CoM	frame,	i.e.		

(E +mp)
2 � p2 = (Many +m⇡)

2 ) Epp
th =

(Many +m⇡)2 � 2m2
⇡

2mp

Being	Many	the	total	rest	mass	of	the	final	products	apart	from	π0	.	The	typical	reac;on	of	
this	kind	implies	the	produc;on	of	two	protons	in	the	final	state	in	this	case	the	threshold	is:			

Epp
th ' mp + 2m⇡

NOTE:	Comparing	the	;me	scales	for	pp	and	diffusion	it	follows	that	the	pp	mechanism	is	
irrelevant	as	energy	losses	mechanism	for	CR.	Let	us	assume:	constant	pH	cross-sec;on	
σpH≈30	mb	(3x10-26	cm2),	number	density	for	protons	in	the	ISM	nH=1	cm-3,	constant	
diffusion	coefficient	D=3x1028	cm2/s,	galac;c	halo	and	disk	heights	respec;vely	H=3	Kpc	
and	h=0.15	kpc.		

p+H ! ⇡0pp



Taking	into	account	that	the	;me	spent	in	the	disk	is	roughly	h/H	of	the	total	diffusion	;me,		
one	has	

where	Ip	is	the	flux	of	CR	protons	and	dσ/dEπ	is	the	differen;al	cross	sec;on	for	the	
produc;on	of	a	π0	with	energy	Eπ	in	the	LAB	frame.		
	
NOTE:	Eq.	above	holds	in	the	case	of	an	isotropic	distribu;on	of	both	bullets	and	targets.		
	
The	emissivity	of	secondary	photons	produced	by	the	decay	of	pions	is		

J⇡(E⇡) = 4⇡nH

Z 1

E⇡

dEp Ip(Ep)
d�(E⇡, Ep)

dE⇡

J�(✏�) = 2

Z 1

✏�+m2
⇡/4✏�

dE⇡
J⇡(E⇡)p
E2

⇡ �m2
⇡

NOTE:	pH	interac;ons	are	important	for	the	produc;on	of	secondary	gamma	rays.	Apart	
from	the	disk,		pp	is	important	in	those	regions	with	increased	target	density	(and/or	
protons	density)	such	as	in	molecular	clouds	or	SNR.		
	
The	number	of	π0	produced	per	unit	volume,	energy	and	steradian	(emission	func;on	or	
emissivity)	can	be	computed	as			

⌧pp =
H

nHhc�pH
' 2⇥ 1016s ⌧diff =

H2

D
' 2⇥ 1015s
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Figure 2: Inclusive cross section for π0 production, from [7]. See also [20].

The term ⟨ξσπ(Tp)⟩ is the inclusive cross section for
the production of π0 (Figure 2), irrespective of the re-
maining content of the secondary beam, and the pro-
duction cross section is normalized to unity, so

∫ ∞

0
dTπ

dNπ(Tp)

dTπ
= 1 .

By contrast, exclusive cross sections are cross sections
for specific decay channels.
The inclusive cross section of particle i in reaction Y

is the product of the inelastic cross section for reaction
Y and the multiplicity ζi of particle i. Consequently
the inclusive cross section is much larger than the in-
elastic cross section at energies well above threshold
when the multiplicity is high. The inclusive cross sec-
tion for the production of π0 in p-p collisions can be
fit within the uncertainty of the cross section measure-
ments by the function

σπX(mb) = 32 lnpp +
48.5
√
pp

− 59.5 , (13)

for proton momentum pp = mp

√

(1 + Tp/mp)2 − 1 in
the range 8 GeV/c < pp < 1000 GeV/c [7]. See [18]
for γ-ray production cross sections at LHC energies.

2.2. γ rays from π0 Decay
In its rest frame, the pion decays into two γ rays

with energy mπ/2, but in the LS, the π0-decay γ rays
are radiated with every allowable energy between a
kinematic minimum and maximum energy defined by
setting µ = ±1 in the relation ϵ′ = mπ/2 = γπϵ(1 −
βπµ). If the π0 decays isotropically in its own rest

frame, then the γ-ray decay spectrum in the proper
frame of the π0 is

dN

dϵ′dΩ′ = 2
δ(ϵ′ −mπ/2)

4π
. (14)

The factor of two arises because two photons are pro-
duced per interaction. For a π0 produced with Lorentz
factor γπ, the transformation properties ofN(ϵ,Ω) im-
ply from Equation (9) that

dN

dϵdΩ
=

δ(ϵ′ −mπ/2)

2πγπ(1− βπµ)
, (15)

so that

dN

dϵ
=

2

βπγπmπ
H [ϵ;

1

2
γπmπ(1−βπ),

1

2
γπmπ(1+βπ)] .

(16)
The spectral number emissivity for π0 production

from cosmic ray protons colliding with target protons
is

ṅpH→π0(Tπ) = 4πnp

∫ ∞

0
dTp jp(Tp,Ωp)

dσpH→π0 (Tp)

dTπ
,

(17)
wherer j(Tp) is the cosmic-ray proton flux, described
in more detail below. The γ-ray emissivity from π0

decay is

ṅπ0→2γ(ϵ) =
2

mπ

∫ ∞

Tmin
π

dTπ
ṅpH→π0(Tπ)

√

Tπ(Tπ + 2mπ)
,

(18)
where Tmin

π (ϵ) = mπ[γmin
π (ϵ)−1], and γmin

π (ϵ) is given
by

γmin
π (ϵ) =

1

2
[

ϵ

(mπ/2)
+

(mπ/2)

ϵ
] , (19)

eConf C121028

The	cross	sec;on	for	π0	produc;on	from	p+p	interac;ons	can	be	wri6en	in	terms	of	the	total	
inclusive	cross	sec;on	associated	to	the	reac;on	pp	à	π0	+	anything,	it	is	given	by	

The	quan;ty	f	is	an	auxiliary	func;on	that,	fi6ed	on	the	experimental	data,	should	fulfill	the	
condi;on	

Low	energies	
Near	the	pion	produc;on	threshold	at	
energies	around	1	GeV	the	behavior	of	
the	cross	sec;on	is	model	dependent,	it	
suffers	large	experimental	uncertain;es.					

High	energies	
At	energies	larger	than	10	GeV	the	
behavior	of	the	cross	sec;on	is	be6er	
understood	with	an	almost	constant	
(logarithmic)	behavior	and	the	func;on	f	
sa;sfies	the	scaling	f=f(x)		with	x=Eπ/Ep.	

Z
dE⇡

E⇡
f(Ep, E⇡) = 1

d�(Ep, E⇡)

dE⇡
= �inc(Ep)

f(Ep, E⇡)

E⇡
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Comparison	of	the	model	predic;on	of	the	func;on	f(Eπ,	Ep)/Eπ	with	experimental	data.	
Photons	and	pions	emissivity	(C.D.	Dermer,	A&A	(1986)).		
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NOTE:	at	high	energies	(>100	GeV)	the	CR	spectrum	as	
a	power	law	behavior,	which	is	reproduced	by		pions	
and	gamma	rays:	

Ip(E) = I0

✓
E

E0

◆��

J�(E�) = 2

Z

E�

dE⇡

E⇡
J⇡(E⇡) =

2

�
J⇡(E�) =

�

2
4⇡nH�0Ip(E�)⇤�

J⇡(E⇡) = 4⇡nHI0E
�
0E

��
⇡ �0

Z 1

0
x

��2
f(x) = 4⇡nH�0Ip(E⇡)⇤�

⇤� =

Z 1

0
dxf(x)x��2with																																								a	numerical	constant.		

Dermer	1986	



The	diffuse	galac;c	gamma	ray	background	as	recently	observed	by	Fermi-
LAT	is	likely	produced	by	pp	sca6ering.			

Diffuse	galacFc	gamma-ray	background	
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A
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Hadronic	models	
pp ! ⇡0 ! ��

γ	rays	emi6ed	with	the	same	spectrum	of	CR:		

E��

Leptonic	models	

Gamma	 rays	 are	 produced	 by	 the	 inverse	 Compton	 sca6ering	 of	 rela;vis;c	
electrons	on	local	photon	backgrounds.	The	spectrum	of	gamma	rays	emi6ed	has	
a	fla6er	behavior	respect	to	CR	

Gamma-ray	emission	in	SNR	
The	local	environment	of	a	Super	Nova	Remnant	(SNR)	is	a	likely	place	for	both	interac;ons:	
proton-proton	and	ICS.	Gamma	ray	observa;ons	are	of	paramount	importance	in	tagging	
the	actual	produc;on	mechanism.	

E� ��1
2

NOTE:	this	behavior	of	the	gamma	ray	spectrum	might	be	the	smoking	gun	for	CR	
accelera;on.	The	flux	of	gamma	rays	should	also	exhibit	the	“pion	bump”	a	peak	in	
the	flux	due	to	pile	up	at	the	threshold	mπ/2.		

e� ! e�



The	case	of	RXJ1713	

	Bamba	et	al.	(2009);		Aharonian	et	al.	(2004-2007);	Abdo	et	al.	(2011)	

observed	in	keV,	GeV	and	TeV	range	
	
	
X-ray	 rims	 observed	 with	 B~160	 μG	 are	
compa;ble	with	CR	accelera;on		
	
hadronic	origin	of	GeV-TeV	emissions	 can	
be	possible		 -1
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FIG. 1.— The top two panels show the proton number density and the mag-
netic field as a function of distance from the center of the SNR for Model A.
In each of these two panels, the dashed curve is the profile at the beginning
of the simulation and the solid curve is the profile at tSNR = 1630 yr. The
third panel shows the mass within R at t = 0 and the fourth panel shows the
escaping CR number density. The diffusion parameters as defined in Eq. 3
are listed in the fourth panel. Escaping CRs are only followed beyond the FS
and they leave the spherically symmetric simulation freely at the outer radius
of ∼ 16 pc. The sharp dropoff in λCSM within ∼ 9 pc indicated in the bot-
tom panel shows the effect of assuming Bohm diffusion for the trapped CRs.

we could have scaled λCSM with (B/BCSM,0)−βn , or even
a combination of density and magnetic field terms. These are
essentially equivalent parameterizations unless the connection
between background field, ambient density, and wave gener-
ation by streaming CRs is specified. The normalization of
the CSM diffusion coefficient, DCSM,0 = λCSM,0 c/3, can
be estimated from CR propagation studies (see, for example,
Ptuskin et al. 2006; Gabici et al. 2009). For example, with
DCSM,0 = 1027 cm2 s−1, nCSM = 0.01 cm−3, αrg = 0.5,
and βn = 1, λCSM ∼ 1 pc at 1 GeV, consistent with the fits
of Ptuskin et al. (2006). In general, the stronger the diffusion
(i.e., the smaller λCSM) the greater the γ-ray emission will be
in the external material.
The values nuni and nshell are the proton number densities

for the uniformCSM beyond the dense shell and for the dense
shell, respectively. The valuesMshell and Rshell are the mass
of the dense shell and its inner radius, respectively, and Bshell

is the magnetic field in the shell. As shown in Figs. 1 and 3,
we smooth the transition from the pre-SN wind to the dense
shell.
We note that within the FS we assume Bohm diffusion for

the CRs with a mean free path λ ∼ rg which is very much

FIG. 2.— Model A fit to SNR J1713 observations. The different emis-
sion processes are: synchrotron (solid blue curve), IC (dot-dashed pur-
ple curve), pion-decay from trapped CRs (dashed red curve), pion-decay
from escaping CRs ( dotted black curve), and thermal X-rays (solid black
curve). The dashed black curve is the summed emission. The data is from
Acero et al. (2009) (radio), Tanaka et al. (2008) (Suzaku X-rays), Abdo et al.
(2011) (Fermi-LAT), and Aharonian et al. (2011) (HESS). Note that the two
lowest energy Fermi-LAT points are upper limits. For all models we use a
column density of nH = 7.9×1021 cm−2.

smaller than λCSM. This is reflected in the sharp drop in λ
within the FS as shown in the bottom panels of Figs. 1 and 3.

3. RESULTS
3.1. Pre-SN Wind Interaction

For our core-collapse model A, we take the SN explosion
energy to be ESN = 1051 erg, the ejecta massMej = 3M⊙,
and assume a slow, dense, pre-SN wind with a mass-loss rate
dM/dt = 10−5M⊙ yr−1, and wind speed Vwind = 20 km
s−1. Our model is a simplified description that might resem-
ble what happens after an early-type star with a fast wind
creates a large, low-density bubble before evolving into a
red-supergiant with a much slower wind (see, for example,
Chevalier 1999). As we show below, the critical conditions
that result in a good leptonic fit are that the density is rela-
tively low and the B-field in the wind is lower than the normal
ISM field. Other than this, none of our conclusions depend
critically on particular wind parameters.
To determine the unshocked magnetic field as a function

of radius, R, in the pre-SN wind, we take σwind = 0.03
in equation (1). At the assumed age of SNR J1713 (i.e.,
tSNR ≃ 1630 yr), the FS has not yet reached the dense ma-
terial of the swept-up wind. The situation is shown in Fig. 1
where, in the top two panels, the proton number density, np,
and the magnetic field, B, are plotted as functions of radius,
R, from the center of the SNR. The dashed curves in the top
two panels are the density and magnetic field profiles at the
start of the simulation. The solid curves are these profiles at
tSNR = 1630 yr. Parameters have been chosen so the SNR
radius is ∼ 9 pc at tSNR = 1630 yr, consistent with a distance
to SNR J1713 of∼ 1 kpc and an angular size of∼ 60 arcmin.
As seen in the second panel, the pre-SN wind magnetic field
just upstream of the FS, as determined by σwind, is ∼ 0.2µG
at tSNR = 1630yr and this is increased by compression and
amplification to ∼ 10µG immediately downstream.
At a radius beyond the FS, we have placed a dense shell

with a total mass∼ 100M⊙ and the third panel in Fig. 1 gives

LEPTONIC	

Ellison	et	al.	2012	

No	 oxygen	 lines	 observed,	 very	 small	 target	
densi;es,	less	efficient	pp	interac;ons.			
	
leptonic	 origin	 of	 GeV-TeV	 emissions	 requires	
high	 IR	 light	 (~20	;mes	than	observed)	and	too	
low	B	(if	compared	to	X-ray	emission).	
	
complex	 environment,	 future	 high	 resolu;on	
gamma	 ray	 observa;ons	 will	 dis;nguish	
different	emiMng	regions.		



Morlino	&	Caprioli	2011	

Steep spectrum hard to 
explain with leptons 

The	case	of	Tycho	

SNIa	 exploded	 in	 roughly	 homogeneous	
ISM	(regular	spherical	shape)	
	
From	X-ray	observa;ons	B~300	μG	
	
Maximum	energy	protons	Emax~500	TeV	

Important	example	of	 the	credibility	 level	of	
theories	 based	 on	 DSA.	 Space	 resolved	
gamma	ray	observa;ons	would	test	different	
theore;cal	hypothesis.	

G. Morlino and D. Caprioli: Strong evidences of hadron acceleration in Tycho’s Supernova Remnant 11
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Fig. 8. X-ray emission due to synchrotron (dashed line) and to
synchrotron plus thermal bremsstrahlung (solid line). Data from
the Suzaku telescope (courtesy of Toru Tamagawa).
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Fig. 9. Projected X-ray emission at 1 keV. The Chandra data
points are from Cassam-Chenaı̈ et al. (2007) (see their Fig. 15).
The solid line shows the projected radial profile of synchrotron
emission convolved with the Chandra point spread function (as-
sumed to be 0.5 arcsec).

tailed model of the line forest is, however, beyond the main goal
of this paper.

The projected X-ray emission profile, computed at 1 keV, is
shown in Fig. 9, where it is compared with the Chandra data in
the region that Cassam-Chenaı̈ et al. (2007) call region W. The
solid curve represents the resulting radial profile, already con-
voluted with the Chandra PSF of about 0.5 arcsec, and shows a
remarkable agreement with the data. As widely stated above, the
sharp decrease of the emission behind the FS is due to the rapid
synchrotron losses of the electrons in a magnetic field as large
as ∼ 300µG. In Fig. 9 we also plot the radial radio profile com-
puted without magnetic damping (dashed line); since the typical
damping length-scale is ∼ 3 pc, it is clear that the non-linear
Landau damping can not contribute to the determination of the
filament thickness.

It is worth stressing that the actual amplitude of the mag-
netic field we adopt is not determined to fit the X-ray rim profile,
but it is rather a secondary output, due to our modelling of the
streaming instability, of our tuning the injection efficiency and
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Fig. 10. Synchrotron emission calculated by assuming constant
downstream magnetic field equal to 100 (dotted line), 200
(dashed line) and 300 µG (solid line). The normalization of the
electron spectrum is taken to be Kep = 1.6 × 10−3 for all the
curves.

the ISM density in order to fit the observed gamma-ray emis-
sion (see the discussion in §3). We in fact checked a posteriori
whether the corresponding profile of the synchrotron emission
(which, in shape, is also independent on Kep), were able to ac-
count for the thickness of the X-ray rims and for the radio profile
as well.

4.3. Radio to X-ray fitting as a hint of magnetic field
amplification

Another very interesting property of the synchrotron emission is
that a simultaneous fit of both radio and X-ray data may provide
a downstream magnetic field estimate independent of the one
deduced by the rims’ thickness.

In fact, assuming Bohm diffusion, the position of the cut-off
frequency observed in the X-ray band turns out to be indepen-
dent of the magnetic field strength, actually depending on the
shock velocity only.

On the other hand, if the magnetic field is large enough to
make synchrotron losses dominate on ICS and adiabatic ones,
the total X-ray flux in the cut-off region depends only on the
electron density, in turn fixing the value of Kep independently
of the magnetic field strength. Moreover, radio data suggest the
slope of the electron spectrum to be equal to 2.2 at low energies,
namely below Eroll ≃ 200 GeV. Above this energy the spectral
slope has in fact to be 3.2 up to the cut-off determined by setting
the acceleration time equal to the loss time, as discussed in §2.5.

In Fig. 10 we plot the synchrotron emission from the down-
stream, assuming a given magnetic field at the shock and ne-
glecting all the effects induced by damping and adiabatic expan-
sion. The three curves correspond to different values of B2 =
100, 200 and 300µG, while the normalization factor Kep is cho-
sen by fitting the X-ray cut-off and it is therefore the same for all
curves. As it is clear from the figure, in order to fit the radio data
the magnetic field at the shock has to be >∼ 200µG, even in the
most optimistic hypothesis of absence of any damping mecha-
nism acting in the downstream.

As a matter of fact, synchrotron emission alone can provide
an evidence of ongoing magnetic field amplification, indepen-
dently of any other evidence related to X-ray rims’ thickness or

Morlino	&	Caprioli	2011	



•  The	 pion	 bump	 has	 not	 been	 seen	 so	 far	 (only	 in	 molecular	
clouds	this	feature	seems	observed,	see	later)	

•  The	discrimina;on	between	leptonic	models	(ICS)	and	hadronic	
models	(π0	decay)	can	be	achieved	just	observing	the	spectrum	
only	 with	 high	 angular	 resolu;on.	 Different	 parts	 of	 the	 SNR	
may	have	different	 spectra	 reflec;ng	a	different	origin	or/and	
the	presence/absence	of	nearby	targets	(molecular	clouds,	see	
later).	This	may	be	the	case	of	RXJ1713.		

•  Extension	of	 the	observa;ons	 to	high	energies	can	provide	an	
evidence	of	a	cut-off	 in	 the	PeV	region	 (but	 low	probability	of	
finding	a	suitable	SNR	for	this	observa;ons).		

Gamma-ray	emission	in	SNR	–	quick	summary	



Ackermann	et	al.	2013	

•  Observa;on	 of	 the	 pion	 bump	 directly	
linked	 to	 pion	 decay,	 i.e.	 a	 pile	 up	 of	
photons	at	the	energy	threshold	mπ/2.	

 
•  SN	 close	 to	 molecular	 clouds	 are	 very	

interes;ng	 laboratories	 to	 inves;gate	
CR	 propaga;on	 around	 sources	 and	
escape	from	sources.	

Gamma-ray	emission	from	Molecular	Clouds	



SNR	
Shock	

Shock	inside	the	cloud	
•  the	shock	becomes	collisional	on	scales	

•  It	 slows	down	 since	 it	 feels	 the	ma6er	 in	
the	 cloud,	 par;cle	 already	 accelerated	
escape	 streaming	 away	 and	 interac;ng		
with	ma6er	in	the	molecular	cloud.	

� ⇥ 1
ncloud⇥mol

� 1010
� ncloud

104cm�3

⇥�1 � ⇥mol

10�14cm2

⇥�1
cm

Shock	outside	the	cloud	

SNR	
Shock	 •  γ-rays	 produced	 by	 CR	 reproduce	

the	CR	spectrum	injected	in	ISM.	

•  γ-rays	 emission	 in	 this	 case	 could	
give	 direct	 informa;on	 on	 the	
escaped	flux	of	CR.	



Gamma	rays	from	isolated	MC	

This	 case	 is	 of	 par;cular	 importance	 in	 the	
study	 of	 the	 diffusive	 propaga;on	 of	 CR,	
offering	 a	 unique	 possibility	 of	 determining	
the	 CR	 spectrum	 unaffected	 by	 local	 effects	
such	as	 the	 solar	modula;on.	An	 interes;ng	
instance	 of	 these	 systems	 is	 represented	 by	
the	γ-ray	emission,	already	detected	by	COS-
B,	 EGRET	 and	more	 recently	 by	 Fermi,	 from	
the	 Gould	 Belt	 clouds,	 the	 nearest	 Giant	
Molecular	Cloud	(GMC).		

Figure 9. Spectrum of protons in the ISM (thick red line) compared with the spectrum of CRs as
inferred from gamma ray observations of clouds in Ref. [31] (shaded area).

well make the spectra harder rather than steeper, depending on wave helicity in the shock
region.

If the di↵usion coe�cient is self-generated, as discussed in the present paper, the steep
di↵usion coe�cient at & 200 GV is due to CRs themselves, and a relatively flat injection
spectrum is required Q(E) / E�� with � = 2.1� 2.2, that can in principle be accounted for
with a mild e↵ect of scattering centers. At energies higher than a few hundred GeV/n, the
spectra of individual elements harden so as to make their slope ⇠ � + 1/3 if the cascade of
waves occurs within the framework of a Kolmogorov cascade. It is quite possible that this
scenario may also solve the puzzle of low anisotropy observed at & TeV energies, although
in order to address this issue one has to take into account the discrete nature of sources
[23, 24, 25].

4.5 The case of clouds in the Gould’s belt

Two recent papers [31, 32] have stimulated much discussion since they indirectly confirmed
that the spectrum of CRs with energy 10 . E . 200 GeV may be steeper than previously
thought, and with a slope compatible with the one quoted by PAMELA in the same energy
region. The two papers are based on the analysis of the gamma ray emission detected by the
Fermi-LAT from selected clouds in the Gould’s belt, located appreciably above and below
the Galactic disc. The density in the clouds is large enough that the main contribution to
the gamma ray emission comes from the generation and decay of neutral pions in inelastic
hadronic collisions of CRs with gas in the clouds. The authors of [31] find that the slope of
the CR spectrum averaged over all the clouds in the sample is ⇠ 1.9 below ⇠ 10 GeV and
⇠ 2.9 at CR energies 10 . E . 200 GeV. The limited Fermi-LAT statistics at high energies
does not allow the authors to probe the energy region where, according to PAMELA, there
should be an additional spectral break.

The low energy behavior of the spectrum inferred by [31] has stimulated much debate
since the authors suggest that the e↵ects of solar modulation might be larger than usually
thought. This suggestion is mainly motivated by the rather large discrepancy between the
CR spectrum inferred from the gamma ray fluxes from clouds and the PAMELA flux of
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Observa;ons	 of	 gamma	 rays	 from	 isolated	
Molecular	Clouds	can	give	important	insights	
on	the	CR	propaga;on	models.		
Possible	 confirma;on	 of	 changes	 in	 the	
slope,	non	linear	effects	in	propaga;on.	

RA	&	Blasi	(2013)	



•  Escape	 is	 the	 link	 between	 accelera;on	 and	 CR	 observed	 at	 the	 Earth.	 High	
energy	par;cles	injected	by	the	source	are	the	sum	of	“escaped”	and	“released”	
par;cles.	

•  The	two	contribu;ons	to	the	 injected	spectrum	(i.e.	 from	escaped	par;cles	and	
par;cles	released	aper	the	end	of	expansion)	can	be	disentangled	looking	at	the	
gamma	ray	emission	from	clouds.	

	
•  The	study	of	these	gamma	emissions	can	also	give	important	 insights	on	the	CR	

propaga;on	 inside	clouds,	most	 likely	on	self-generated	turbulence,	and	on	the	
diffusion	topology.	

Gamma-ray	emission	in	MC	–	quick	summary	



Proton-Photon	interacFons	
Let	us	consider	now	the	interac;ons	of	
high	energy	(rela;vis;c)	protons	and	
astrophysical	photon	backgrounds.		
Relevant	backgrounds	are:	the	Cosmic	
Microwave	Background	(CMB)	and	the	
Extragalac;c	Background	Light	(EBL).		
Relevant	processes	are	

p+ � ! p+ e+ + e�
Pair	produc;on	

Photo-pion	produc;on	

Both	processes	can	be	realized	only	if	the	proton	has	enough	energy	to	produce	the	par;cles	
in	the	final	state.			

Pair	produc;on	

CMB:		
ε=KBT0≈2.3x10-4	eV	

Eth ' 2⇥ 1018eV (✓ = ⇡)

EBL:		
ε≈1	eV	

Eth =

(mp + 2me)
2 �m

2
p

2✏(1� cos✓)

' 2memp

✏(1� cos ✓)

Eth ' 5⇥ 1014eV (✓ = ⇡)

CMB	

EBL	

p+ � ! p+ ⇡0 p+ � ! p+ ⇡+ + ⇡�



Photo	pion	produc;on	

Eth =

(mp +m⇡)
2 �m

2
p

2✏(1� cos✓)

' mpm⇡

✏(1� cos ✓)

EBL:	ε≈1	eV	

These	reac;ons	become	important	at	very	high	energy,	the	regime	of	the	so-called	Ultra	
High	Energy	Cosmic	Rays	(UHECR)	observed	with	energies	up	to	1020	eV.	

The	energy	losses	of	UHE	protons	due	to	pair-produc;on	and	photo	pion	produc;on,	i.e.	
energy	lost	per	unit	;me,	can	be	computed	in	a	very	general	form	through	

being	ε’	and	ε’min	the	photon	energy	and	the	threshold	energy	in	the	reference	frame	in	
which	the	proton	is	at	rest,	f(ε)	is	the	so-called	inelas;city	of	the	process,	i.e.	the	average	
frac;on	of	energy	lost	by	the	proton	in	one	interac;on	in	the	LAB	reference	frame,	σ(ε)	the	
cross-sec;on	of	the	process,	nγ(ε)	the	number	of	background	photons	per	unit	volume	and	
energy,	Γ=E/mp	the	Lorentz	factor	of	the	incident	proton.				

CMB:		
Ε=KBT0≈2.3x10-4	eV	

Eth ' 2⇥ 1020eV (✓ = ⇡)

Eth ' 1⇥ 1017eV (✓ = ⇡)

NOTE:	the	photo	pion	produc;on	process	implies	a	huge	Lorentz	boost	between	the	LAB	
frame	and	the	rest	frame	of	the	proton,	at	the	level	of	1011	.	
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Pair	produc;on	

Taking	into	account	only	the	CMB,	which	has	a	predominant	role	at	energy	>1017	eV,	we	
can	analy;cally	workout	the	behavior	of	energy	losses.	Using					
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At	energies	below	threshold	<	2x1018	eV,	the	pair	produc;on	process	is	realized	only	
through	the	CMB	photons	on	the	tail	of	the	Planckian	distribu;on.	In	this	regime	the	
inelas;city	f	and	the	cross	sec;on	σ	can	be	es;mated	at	their	threshold	value:	

Exponen;ally	suppressed	at			

✏0min = 2me

✓
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me

mp

◆

�KBT0 ⌧ me E ⌧ 2⇥ 1018eV

at	energies	higher	than	2x1018	eV	the	pair	produc;on	process	becomes	rapidly	less	
efficient	respect	to	photo	pion	produc;on.	
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Photo	pion	produc;on	

Also	in	this	case,	at	energies	below	threshold	<2x1020	eV,	being	the	interac;on	with	the	
tail	of	the	CMB	distribu;on,	we	can	determine	f(ε)	and	σ(ε)	at	the	threshold	value	

with	σ0	=	4x10-28	cm2.	The	energy	losses	are		
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At	higher	energies	>2x1020	eV,	the	cross	sec;on	becomes	almost	constant	around	1x10-28			
and	the	average	frac;on	of	energy	lost	by	the	proton	(in	the	LAB	frame)	f≈1/2	and	
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Nucleus-Photon	interacFons	
The	interac;on	processes	that	involve	high	energy	(>1017	eV)	nuclei	and	astrophysical	
backgrounds	(CMB	and	EBL)	are:	pair	produc;on	and	photo-disintegra;on.				

(A,Z) + � ! (A,Z) + e+ + e�

(A,Z) + � ! (A� n, Z � n) + nN

Pair	produc;on	

This	is	the	same	processes	that	involves	protons.	The	only	relevant	background	involved	is	the	
CMB.	The	type	of	nucleus	(A,Z)	remains	unchanged,	only	the	par;cle’s	energy	changes	because	
of	the	interac;on.	The	rate	of		energy	losses	can	be	computed	star;ng	from	the	rate	of	
protons	and	using	the	scaling			

fA =
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A
�A = Z2�p
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◆(A,Z)

=
Z2

A

✓
1

E
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Photo	disintegra;on	

This	process	does	not	change	the	Lorentz	factor	of	the	nucleus,	it	changes	only	the	type	of	
nucleus	that	in	the	final	state	will	be	depleted	by	one	or	more	nucleons.	However,	the	
dominant	photo	disintegra;on	channel	implies	the	emission	of	a	single	nucleon.		
This	process	cannot	be	treated	as	a	con;nuous	decrease	in	energy	of	the	propaga;ng	
par;cle,	because	it	implies	a	change	in	the	par;cle	type	with	the	disappearence	of	the	
ini;al	par;cle.					

Eth = AE0
th ' A⇥ (3÷ 5)⇥ 1018 eV

Eth = AEp
th ' A⇥ 2⇥ 1018 eV



It	can	be	treated	as	a	“decaying”	process	with	a	typical	“decaying	;me”	given	by		

NOTE:	The	propaga;on	of	UHE	nuclei	always	implies	the	genera;on	of	secondary	lighter	
UHE	nuclei	(the	Lorentz	factor	is	conserved!).	
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Just	a	liAle	bit	of	Cosmology	
We	saw	that	UHE	(>1017	eV)	par;cles	(both	protons	and	nuclei)	can	travel	over	
cosmological	distance,	hence	Cosmology	does	ma6er!			
	
The	effect	of	the	expansion	of	the	universe	is	seen	in	the	change	in	astrophysical	
backgrounds,	in	both	density	and	radia;on’s	energy,	and	in	the	UHE	par;cle’s	energy.			

CMB:	it	is	the	well	known	relic	radia;on	of	the	big	bang,	with	a	Planckian	distribu;on	and	
the	evolu;on	with	red	ship	through	its	temperature	T(z)=T0(1+z).	
	
EBL:	composed	of	infrared,	op;cal	and	ultraviolet	photons	produced	by	astrophysical	
sources	and	sca6ered	by	the	ISM	(dust)	at	present	and	past	cosmological	epochs.	Has	a	
less	understood	cosmological	evolu;on,	typically	model	dependent.		

The	rate	of	energy	(adiaba;cally)	lost	by	UHE	par;cles	(protons	or	nuclei)	because	of	the	
expansion	of	the	universe	can	be	wri6en	as		✓

1

�

d�

dt

◆
= H(z) = H0

p
(1 + z)3⌦m + ⌦⇤

The	rate	of	energy	losses	due	to	the	processes	discussed	so	far	will	get	a	red-ship	dependence	
as	follows:			

n�(✏) ! n�(✏, z) ✏ ! ✏(1 + z) � ! �(1 + z)



Proton	and	nuclei	interac;ons	with	astrophysical	backgrounds	produce	hadronic	par;cles,	
mainly	pion,	that	in	turn	decay	giving	rise	to	the	produc;on	of	secondary	UHE	photons,	
electron	positron	pairs	and	neutrinos.	

CASCADE UPPER LIMIT
V.B. and A.Smirnov 1975

e − m cascade on target photons :

{
γ + γtar → e+ + e−

e + γtar → e′ + γ′

EGRET: ωobs
γ ∼ (2 − 3) × 10−6eV/cm3 .

ωcas >
4π
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, i = νµ + ν̄µ etc.

Secondary	emission	gamma	rays	and	neutrinos	
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Cascade	develops	on	CMB	and	EBL	through	pair	produc;on	and	ICS,	the	typical	threshold	
energy	scales	for	pair	produc;on	are	

The	radia;on	lep	behind	by	the	cascade	is	restricted	to	energies	below	the	lowest	threshold.		

The	cascade	development	has	a	universal	
behavior	independent	of	the	energy	and	
spectrum	of	the	ini;al	photon/pair	

EEBL ' 2.5⇥ 1011eVECMB ' 2.5⇥ 1014eV

εCMB	=	3x10-4		eV	and	εEBL	=	1	eV	are	the	typical	energies	
of	the	background	photons.	EX =

EEBL

3

✏CMB

✏EBL
' 107 eV



Fermi-LAT	data	(ωcas=	5.8x10-7	eV/cm3)	can	be	compared	with	the	theore;cal	
expecta;on	above	to	constrain	models	of	UHECR.		 6

FIG. 5: Range of allowed evolution parameters, m and zmax, for extended reference models with fixed Emax = 1× 1021 eV (left
panel) and Emax = 1× 1022 eV (right panel). The cascade energy density ωcas is shown as function of m by the solid lines for
the ankle model (αg = 2.0), and dashed lines for the dip model (αg = 2.6). The numbers on the lines show zmax. The allowed
parameters correspond to part of the curves below ωmax

cas = 5.8× 10−7 eV/cm3 shown by the red horizontal line.

use extreme values for the model parameters. Choosing
the parameters for the model in the lower-right corner
(the curve marked 1022) we try to reach the sensitivity
of JEM-EUSO. Since a soft spectrum increases ωcas, we
choose the hard spectrum with αg = 2.0, while Emax

should be as large as possible. By other words we search
for the extension of the ankle reference model with al-
lowed evolution and large Emax. We choose Emax =
1 × 1022 eV, with zmax = 2 and evolution parameter
m = 3. Normalized to the HiRes data, this model has
ωcas = 3.3×10−7 eV/cm3, i.e. is somewhat below the cas-
cade limit (see also Fig. 5). For such values, the neutrino
flux is marginally detectable by JEM-EUSO.
In the lower-left corner (the curve marked 1020) we aim

to cosmogenic neutrino detection by IceCube. Here we
should increase the low-energy tail of the neutrino flux
and suppress the pair-produced cascade radiation. To
that end, we use αg = 2.0 with strong evolution to en-
hance the flux of low-energy neutrinos. The maximum
acceleration energy can be low, e.g. Emax = 1× 1020 eV.
Moreover, we choose evolution with m = 3.0 and zmax =
6.0, which results in ωcas = 5.5 × 10−7 eV/cm3

≈ ωmax
cas .

As our calculations show, the flux is only marginally de-
tectable by IceCube even for these extreme parameters.
The two models above demonstrate that even for ex-

treme assumptions cosmogenic neutrinos remain unde-
tectable by existing detectors such as Auger, and could
be only marginally observed by IceCube and by future
detectors JEM-EUSO and Auger-North (with sensitivity
to neutrinos 5–6 times higher than Auger-South).
The observation of radio emission from neutrino-

induced air showers provides an effective method for the
detection of low fluxes of cosmogenic neutrinos from the
highest energy part of their spectrum. The upper limit
on UHE cosmogenic neutrino flux from the most restric-
tive experiment of this type, ANITA, is shown in Fig. 3

(Gorham et al. [18]). Recently, several particles with
energies above 1 × 1019 eV have been detected there
[20]. The high energy threshold is a disadvantage of this
method. In the recently proposed ARIANNA detector
[21], the threshold might be lowered to about 1017 eV
while monitoring 900 km2 of Antarctic ice.

A very sensitive instrument for UHE neutrino detec-
tion has been proposed in the project LORD (Lunar Or-
bital Radio Detector) [22], where a detector on a lunar
satellite can observe the neutrino-produced radio-signal
from lunar regolith. The sensitivity of this instrument,
as estimated by the authors of the project, should be suf-
ficient for the measurement of the cosmogenic neutrino
fluxes shown in Fig. 3 by curves 1021.

Before concluding, we would like to compare the re-
sults of this investigation to the ones of Ahlers et al. [23]
that appeared after ours in the arXiv. While the main
goal of our work was to derive an upper limit on the cos-
mogenic neutrino flux, the authors of Ref. [23] aimed at
exploring the allowed parameter space of UHECR mod-
els, notably of those predicting maximal neutrino fluxes.
These authors used as their criterion for the rejection
of UHECR models ωmax

cas = 5.8× 10−7 eV/cm3 from our
calculations, and thus the derived maximally allowed cos-
mogenic neutrino fluxes should coincide. The largest cos-
mogenic neutrino fluxes presented in Fig. 4 of Ref. [23] are
very similar to our fluxes obtained in the extreme mod-
els with strong cosmological evolution (e.g. the curve 1022

in Fig. 3), both exceeding our reference cases (αg = 2.6
and αg = 2.0 without evolution) by an order of mag-
nitude at E ∼ 1018 ÷ 1019 eV. It is noteworthy that a
much stronger cosmological evolution was considered in
the calculations of Ref. [23]. Among other differences, the
authors of Ref. [23] assumed that the IceCube sensitiv-
ity extends up to 1019 eV, while we used Emax = 1017 eV
following Ref. [19].

Berezinsky,	Gazizov,	Kachelriess,	Ostapchenko		(2011)	

The	normaliza;on	of	the	cascade	spectrum	can	be	easily	determined	imposing	energy	
conserva;on,	i.e.	the	total	energy	of	photons\pairs	that	started	the	cascades	should	be	
equal	to	the	total	energy	of	the	cascading	par;cles.				
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This	comparison	already	fixes	
stringent	limits	on	the	cosmological	
evolu;on	of	sources	of	UHE	protons.		
	
NOTE:	the	produc;on	of	secondary	
gamma	rays	and	neutrinos	is	
maximal	in	the	case	of	a	pure	proton	
composi;on	of	UHECR.		
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FIG. 1. Fitting to UHECR spectrum below the ankle and the corresponding diffuse gamma-ray flux initiated by CR propagation
with different source distributions (left: (a) SFR evolution; middle: (b) no evolution; right: (c) sources located at 120Mpc).
In the upper panels, the green solid lines represent the best-fit UHECR fluxes for each source distribution considered, while
the dashed lines represent the unattenuated flux. The thin blue lines show the results for a soft injection spectrum of p = 2.6,
normalized to the data at 1EeV. Hollow circles show the PAO[5] data. The adopted values of the power-law index p and
the local energy production rate are provided within the figure. The lower panels show the corresponding diffuse gamma-ray
emission resulting from the cascade initiated by UHE protons, with thick lines and thin lines are respectively for best-fit case
and p = 2.6 case. The black filled circles show the IGRB measured by Fermi/LAT([3]). The IGRB upper limit for the non-
point-source component (or the truly diffuse component) are shown as a red bar with an arrow. The orange hatched region
represents the uncertainty of the limit due to the uncertainties in the obtained source count distribution (i.e., dN/dS). The
cascade flux in the right panel is multiplied by 10.

shown in the lower panels. In panel (a), we assume that
the redshift evolution of the UHECR source density fol-
lows that of the star formation rate (SFR, [17, 18]). In
this case the mean value for the source redshift is z = 1,
with ∼ 40% of the unattenuated flux being lost to EM
particles through propagation[19]. The cascade flux is
significantly higher than the non-point-source IGRB up-
per limit, reaching the level of the total measured IGRB.
This result is consistent with previous studies[e.g. 20, 21].
In panel (b), results for the case of no evolution in the
source density with redshift are shown. In this case,
a larger fraction of UHECRs arrive from lower redshift
sources, reducing the energy losses experienced en-route,
resulting in less spectral steepening than that for case (a).
A range of softer injection spectra are considered for this
case than that for SFR evolution. Note that the diffuse
gamma–ray flux is not sensitive to the injection spectrum
index for the narrow energy band case we consider. This
is demonstrated in the figures, with the cascade flux be-
ing comparable, regardless of the source index, p. Due to
the reduced number of sources at high redshift for case
(b) relative to case (a), with a mean source redshift of
z = 0.6, only about 20% of the unattenuated flux is lost

to EM particles. The diffuse gamma-ray flux in this case,
however, is still marginally above the non-point source
IGRB upper limit. We note that the obtained flux is
not strongly dependent on the maximum source redshift,
set to zmax = 5 in our calculations, due to the increased
source distance and reduced increase in comoving volume
at high redshift.

It is worth highlighting that when calculating the
UHECR flux from the entire universe, we scale the energy
production rate in the distant universe with the local en-
ergy production rate (see Eq.1), as most other authors in
the literature have done. The underlying assumption for
this treatment is the existence of a uniform and continu-
ous distribution of UHECR sources throughout the whole
universe. This may well be established on large spatial
and temporal scales. However, it is perhaps unlikely that
we are in such an “average” place where the local pro-
duction rate equals the large spatial and temporal scale
mean value.

A natural solution preventing UHECR losses over-
producing the new IGRB limit is to attribute UHECRs
below the ankle to nearby extragalactic objects, or even
to our Galaxy [22–25]. In the right panel (c) of Fig. 1,

6

γg m zmax ηγ (η̃γ) [A] ηγ (η̃γ) [B] ηγ (η̃γ) [C] N̄ν

2.6 1 5 1.40 (0.59) 0.94 (0.50) 1.11 (0.57) 0.78

2.6 1 1 1.38 (0.46) 0.93 (0.39) 1.10 (0.44) 0.31

2.5 2 5 1.60 (0.87) 1.07 (0.74) 1.26 (0.84) 2.24

2.5 2 1 1.57 (0.60) 1.05 (0.51) 1.24 (0.58) 0.48

2.4 SFR 5 1.88 (1.20) 1.26 (1.03) 1.49 (1.16) 2.28

2.3 5 1 2.23 (1.38) 1.49 (1.18) 1.76 (1.33) 1.72

2.2 6 1 2.52 (1.86) 1.69 (1.59) 2.00 (1.79) 2.88

2.2 5 0.7 2.15 (0.83) 1.44 (0.71) 1.70 (0.80) 0.99

2.2 6 0.7 2.31 (0.99) 1.55 (0.85) 1.83 (0.95) 1.19

TABLE I: Maximal ratios ηγ , η̃γ for galactic γ-ray foreground models A, B or C for several representative proton
source models fitting TA spectrum. The ratios higher than 1 are in conflict with Fermi LAT data. Also shown the
expectation value of the neutrino events N̄ν with energy Eν > 10 PeV assuming IceCube 7 year exposure from Fig.1
of Ref. [19]. Models with N̄ν > 2.3 have Poisson probability less than 10%. All spectra are calculated using the EBL

model of Ref. [36].

γg m zmax ηγ (η̃γ) [A] ηγ (η̃γ) [B] ηγ (η̃γ) [C] N̄ν

2.6 1 5 0.92 (0.66) 0.61 (0.57) 0.73 (0.64) 0.78

2.6 1 1 0.90 (0.48) 0.60 (0.41) 0.71 (0.47) 0.31

2.5 2 5 1.02 (1.03) 0.68 (0.89) 0.81 (1.00) 2.24

2.5 2 1 0.99 (0.63) 0.66 (0.54) 0.79 (0.61) 0.48

2.4 SFR 5 1.16 (1.34) 0.78 (1.15) 0.92 (1.30) 2.28

2.3 5 1 1.29 (1.47) 0.87 (1.26) 1.02 (1.42) 1.72

2.2 6 1 1.42 (2.00) 0.95 (1.71) 1.17 (1.93) 2.88

2.2 5 0.7 1.30 (0.87) 0.87 (0.75) 1.03 (0.84) 0.99

2.2 6 0.7 1.35 (1.04) 0.91 (0.89) 1.07 (1.01) 1.19

TABLE II: The same values as in Table I but calculated using the EBL model of Ref. [35]
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FIG. 1: Energy spectra of protons and neutrinos (left panel) and of cascade photons (right panel) from sources
emitting protons with γg = 2.6, m = 1 and zmax = 5 normalized on TA spectrum [41]. Also, the Fermi IGRB
measurements are shown for galactic foreground model B, as well as secondary ν-spectrum along with IceCube

neutrino ’differential flux’ upper limit [18]. The Fermi LAT constraint of Eq. (13) is shown by the black arrow. EBL
models of Ref. [36] (solid lines) and [35] (dashed line) were used in calculations. Only γ-ray spectrum is shown for
EBL model [35] since p- and ν-spectra calculated using different EBL models are practically indistinguishable.

evolution which almost saturates the allowed flux of the cascade photons for the EBL model of Ref. [36]. Sum-

	Liu,	Taylor,	Wang,	Aharonian	(2016)	

	Berezinsky,	Gazizov,	Kalashev	(2016)	

		

Diffuse	gamma	rays	
Diffuse	extragalac;c	gamma-
rays	flux	at	E	�	1	TeV	is	a	
very	powerful	observable	to	
constrain	the	frac;on	of	
protons	in	the	UHECR	
spectrum.	With	the	available	
sta;s;cs,	given	the	poor	
knowledge	of	the	galac;c	
diffuse	foregrounds	and	EBL,	
it	is	impossible	to	exclude	a	
pure	proton	composi;on	at	
(1	−	40)	EeV.		
	
The	observa;on	of	the	
diffuse	extra-galac;c	
gamma-ray	background	will	
be	one	of	the	important	
tasks	for	the	future	CTA	
observatory.	
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UHE	nuclei	suffer	photo-pion	produc;on	
on	CMB	only	for	energies	above	AEGZK	.	
The	produc;on	of	EeV	neutrinos	strongly		
depends	on	the	nuclei	maximum	energy.	
UHE	neutrino	produc;on	by	nuclei	prac;cally		
disappears	in	models	with	maximum	nuclei		
accelera;on	energy	Emax<	1021	eV.		

EeV	neutrinos	 PeV	neutrinos	
PeV	neutrinos	produced	in	the	photo-pion		
produc;on	process	of	UHECR	on	the	EBL		
radia;on	field	The	IceCube	observa;ons	at		
PeV	 can	 be	 marginally	 reproduced	 in	 the	
case	 of	 strong	 cosmological	 evolu;on	
(AGN	like).	

	RA+	(2015)	



	γ	from	distant	AGN				
The	 observed	 high	 energy	 gamma	 ray	 signal	 by	 distant	 blazars	 may	 be	 dominated	 by	
secondary	gamma	rays	produced	along	the	line	of	sight	by	the	interac;on	of	UHE	protons	
with	background	photons.	This	hypothesis	 solves	 the	problems	connected	with	 the	flux	
observed	by	too	distant	AGN.			

Ferrigno,	Blasi,	De	Marco	(2004)	 Essey,	Kalashev,	Kusenko,	Beacom	(2009-13)	

The	spectrum	of	the	final	cascade	is	universal.	The	EM	cascade	behaves	as	a	sort	of	
calorimeter	that	redistribute	the	ini;al	energy	into	gamma	rays	and	neutrinos	with	
a	given	spectrum,	as	discussed	above.	
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NOTE:	at	large	distances	the	contribu;on	
of	secondary	gammas	dominates.		
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Fig. 1.— Comparison of the predicted spectra with the HESS data for three blazars: pan-
els (a) and (b) show model prediction and the data for 1ES 0229+200 (Aharonian et al.

2007b); panels (c) and (d)) show the predicted spectrum and the data for 1ES 0347-
121 (Aharonian et al. 2007a); panels (e) and (f) show the model prediction and the data

for 1ES 1101-232 (Aharonian et al. 2007c). The Fermi upper limits shown at lower energy
were derived from the data by Neronov & Vovk (2010). Panels on the left show the pre-

diction for “high” EBL, while panels on the right show the prediction for the “low” EBL.
The“high” EBL is from the model of Stecker et al. (2006), while the “low” EBL is the result
of scaling down of “high” EBL to the level of 40%. (This range encompasses all published

models.)
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Fig. 1.— Comparison of the predicted spectra with the HESS data for three blazars: pan-
els (a) and (b) show model prediction and the data for 1ES 0229+200 (Aharonian et al.

2007b); panels (c) and (d)) show the predicted spectrum and the data for 1ES 0347-
121 (Aharonian et al. 2007a); panels (e) and (f) show the model prediction and the data

for 1ES 1101-232 (Aharonian et al. 2007c). The Fermi upper limits shown at lower energy
were derived from the data by Neronov & Vovk (2010). Panels on the left show the pre-

diction for “high” EBL, while panels on the right show the prediction for the “low” EBL.
The“high” EBL is from the model of Stecker et al. (2006), while the “low” EBL is the result
of scaling down of “high” EBL to the level of 40%. (This range encompasses all published

models.)
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Fig. 1.— Comparison of the predicted spectra with the HESS data for three blazars: pan-
els (a) and (b) show model prediction and the data for 1ES 0229+200 (Aharonian et al.

2007b); panels (c) and (d)) show the predicted spectrum and the data for 1ES 0347-
121 (Aharonian et al. 2007a); panels (e) and (f) show the model prediction and the data

for 1ES 1101-232 (Aharonian et al. 2007c). The Fermi upper limits shown at lower energy
were derived from the data by Neronov & Vovk (2010). Panels on the left show the pre-

diction for “high” EBL, while panels on the right show the prediction for the “low” EBL.
The“high” EBL is from the model of Stecker et al. (2006), while the “low” EBL is the result
of scaling down of “high” EBL to the level of 40%. (This range encompasses all published

models.)

The	 shape	 of	 the	 spectrum	 is	 fixed	 by	 the	
EBL,	 the	 overall	 height	 is	 propor;onal	 to	
the	 product	 of	 UHECR	 luminosity	 and	 the	
level	of	EBL.	

The	 effect	 of	 different	 Emax	 is	 to	 change	
the	 rela;ve	contribu;on	of	 the	different	
reac;ons	 to	 the	 flux	 of	 secondaries.	 If	
Emax	 is	 large	 (>1019	 eV)	 interac;on	 on	
CMB	 dominates,	 otherwise	 photo-pion	
produc;on	on	EBL	plays	a	role	(provided	
that	Emax>108	GeV).		

Essey,	Kalashev,	Kusenko,	Beacom
	(2011)	


