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OUTLINE OF THE MINI-COURSE

• Basics of particle transport in the presence of magnetic perturbations 
• Second order Fermi acceleration 
• Shock waves in astrophysics  

• First order Fermi acceleration - test particle theory 
• Spectrum from statistical approach 
• Spectrum from the transport equation 
• Maximum energy of accelerated particles 

• First order Fermi acceleration - basic non-linear theory 
• non linear dynamical reaction  
• cosmic ray induced plasma instabilities - Emax 

• DSA in the presence of neutral hydrogen 

• Basics of acceleration to ultra high energies
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COSMIC RAY TRANSPORT

CHARGED PARTICLES 
IN A MAGNETIC FIELD

DIFFUSIVE PARTICLE 
ACCELERATION 

COSMIC RAY  
PROPAGATION IN THE 
GALAXY AND OUTSIDE
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CHARGED PARTICLES IN A REGULAR B FIELD
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In the absence of an electric field one obtains  
the well known solution:

Constantpz =
 t]cos[ Vv 0x Ω=

 t]sin[ Vv 0y Ω= γ c m
B q 0=Ω

LARMOR FREQUENCY
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A FEW THINGS TO KEEP IN MIND

5



MOTION OF A PARTICLE IN A WAVY FIELD
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THIS CHANGES ONLY 
THE X AND Y COMPONENTS 
OF THE MOMENTUM

THIS TERM CHANGES 
ONLY THE DIRECTION 
OF PZ=Pμ

Let us consider an Alfven wave 
propagating in the z direction: 

We can neglect (for now) the electric field associated with the wave, 
or in other words we can sit in the reference frame of the wave:
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Remember that the wave typically moves with the Alfven speed: 

Alfven waves have frequencies << ion gyration frequency 

It is therefore clear that for a relativistic particle these waves, in first approximation, 
look like static waves. 

The equation of motion can be written as: 

If to split the momentum in parallel and perpendicular, the perpendicular component 
cannot change in modulus, while the parallel momentum is described by 
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Wave form of the magnetic field with 
a random phase and frequency  
    
                  Larmor frequency 

In the frame in which the wave is at rest we can write

It is clear that the mean value of the pitch angle variation over a long enough time 
vanishes 

We want to see now what happens to 

8



Let us first average upon the random phase of the waves: 

And integrating over time: 

RESONANCE
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IN GENERAL ONE DOES NOT HAVE A SINGLE WAVE BUT RATHER  
A POWER SPECTRUM:  

THEREFORE INTEGRATING OVER ALL OF THEM: 

OR IN A MORE IMMEDIATE FORMALISM:
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THE RANDOM CHANGE OF THE PITCH ANGLE IS 
DESCRIBED BY A DIFFUSION COEFFICIENT

FRACTIONAL  
POWER (δB/B0)2 

=G(kres)

THE DEFLECTION ANGLE CHANGES BY ORDER UNITY 
IN A TIME:

PATHLENGTH FOR DIFFUSION ~ vτ
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SPATIAL DIFFUSION COEFF.
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DISTRIBUTION FUNCTION OF PARTICLES 
WITH MOMENTUM P AT THE POSITION X 
AT TIME T 

PROBABILITY THAT A PARTICLE WITH  
MOMENTUM P CHANGES ITS MOMENTUM 
BY DELTA P
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In general we can write:	
  

In	
  the	
  limit	
  of	
  small	
  momentum	
  changes	
  we	
  can	
  Taylor	
  –	
  expand:
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Substituting in the first Equation:

Recall	
  that	
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We can now use a sort of  Principle of  Detailed Balance: 

and expanding the RHS: 

And integrating in Delta p:
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We shall see later that the terms in this Eq. vanish for p!0, therefore the  
Constant must be zero and we have:

BOLTZMANN  
EQUATION

COLLISION  
TERM
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IN ONE SPATIAL DIMENSION ONE EASILY OBTAINS: 

WHERE 

IS THE PITCH ANGLE DIFFUSION COEFFICIENT. 

THE PREVIOUS EQUATION CAN BE VIEWED AS THE BOLTZMANN EQUATION 
WITH A SCATTERING TERM DEFINED BY DIFFUSION.
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IT IS INTUITIVELY CLEAR HOW A PARTICLE THAT IS DIFFUSING IN ITS PITCH 
ANGLE MUST BE ALSO DIFFUSING IN SPACE. LET US SEE HOW THE TWO ARE 
RELATED TO EACH OTHER BY INTEGRATING THE BOLTZMANN EQUATION IN 
PITCH ANGLE:

ISOTROPIC PART OF THE PARTICLE  
DISTRIBUTION FUNCTION. FOR MOST  
PROBLEMS THIS IS ALSO VERY CLOSE  
TO THE ACTUAL DISTRIBUTION FUNCTION
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ONE CAN SEE THAT THE QUANTITY 

BEHAVES AS A PARTICLE CURRENT, AND THE BOLTMANN EQUATION BECOMES:  

NOTICE THAT YOU CAN ALWAYS WRITE: 
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RECONSIDER THE INITIAL EQUATION 

AND INTEGRATE IT AGAIN FROM -1 TO m: 

AND MULTIPLYING BY 
 

WITH THIS TRICK:
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NOW RECALL THAT THE DISTRIBUTION FUNCTION TENDS TO ISOTROPY,  
SO THAT AT THE LOWEST ORDER IN THE ANISOTROPY ONE HAS: 

AND RECALLING THE DEFINITION OF CURRENT: 

USING THE TRANSPORT EQ IN TERMS OF CURRENT:

22



NOW WE RECALL THE TRANSPORT EQUATION IN CONSERVATIVE FORM: 

AND PUTTING THINGS TOGETHER: 

BUT IT IS EASY TO SHOW THAT THE FIRST TERM MUST BE NEGLIGIBLE: 

IT FOLLOWS THAT THE ISOTROPIC PART OF THE DISTRIBUTION FUNCTION 
MUST SATISFY THE DIFFUSION EQUATION:

DIFFUSION EQUATION
SPATIAL DIFFUSION COEFFICIENT
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A MORE GENERAL RESULT
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THIS EQUATION, THOUGH IN ONE DIMENSION, CONTAINS ALL THE MAIN 
EFFECTS DESCRIBED BY MORE COMPLEX TREATMENTS 

1. TIME DEPENDENCE  
2. DIFFUSION (EVEN SPACE AND MOMENTUM DEPENDENCE) 
3. ADVECTION (EVEN WITH A SPACE DEPENDENT VELOCITY) 
4. COMPRESSION AND DECOMPRESSION 
5. INJECTION

IT APPLIES EQUALLY WELL TO TRANSPORT OF CR IN THE GALAXY OR TO CR 
ACCELERATION AT A SUPERNOVA SHOCK

IT DOES NOT INCLUDE 2nd ORDER AND SPALLATION, BUT EASY TO INCLUDE
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ACCELERATION OF NONTHERMAL PARTICLES

The presence of  non-thermal particles is ubiquitous in the Universe 
(solar wind, Active galaxies, supernova remnants, gamma ray bursts, 
Pulsars, micro-quasars) 

WHEREVER THERE ARE MAGNETIZED PLASMAS THERE ARE NON- 
THERMAL PARTICLES 

           PARTICLE ACCELERATION

BUT THERMAL PARTICLES ARE USUALLY DOMINANT, SO WHAT DETERMINES 
THE DISCRIMINATION BETWEEN THERMAL AND ACCELERATED PARTICLES? 

                         INJECTION
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DONEC QUIS NUNCALL	
  ACCELERATION	
  MECHANISMS	
  ARE	
  ELECTROMAGNETIC	
  
IN	
  NATURE

MAGNETIC	
  FIELD	
  CANNOT	
  MAKE	
  WORK	
  ON	
  CHARGED	
  
PARTICLES	
  THEREFORE	
  ELECTRIC	
  FIELDS	
  ARE	
  NEEDED	
  

FOR	
  ACCELERATION	
  TO	
  OCCUR

REGULAR	
  ACCELERATION	
  
THE	
  ELECTRIC	
  FIELD	
  IS	
  LARGE	
  

SCALE:	
  	
  

STOCHASTIC	
  ACCELERATION	
  
THE	
  ELECTRIC	
  FIELD	
  IS	
  SMALL	
  

SCALE:	
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REGULAR ACCELERATION

Very	
  special	
  conditions	
  are	
  necessary	
  in	
  Astrophysical	
  	
  
environments	
  in	
  order	
  to	
  achieve	
  this	
  condition,	
  because	
  of	
  
the	
  high	
  electrical	
  conductivity	
  of	
  astrophysical	
  plasmas.	
  
Few	
  exceptions:

UNIPOLAR INDUCTOR: this occurs in the case of  rotating magnetic fields, 
such as in pulsars, rotating black holes. An electric potential is established 
between the surface of  the rotating object (neutrons star, BH) and infinity.  
The potential difference is usable only in places (gaps) where the condition 
                    is violated. MHD is broken in the gaps. 

RECONNECTION: Locally, regions with opposite orientation of  magnetic 
field merge, giving rise to a net local electric field E~LB, where L is the size  
of  the reconnection region. It occurs in the sun and solar wind, but probably 
also in the magnetosphere of  rotating neutron stars and BHs.  
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STOCHASTIC ACCELERATION

Most	
  acceleration	
  mechanisms	
  that	
  are	
  operational	
  in	
  astrophysical	
  environments	
  
are	
  of	
  this	
  type.	
  We	
  have	
  seen	
  that	
  the	
  action	
  of	
  random	
  magnetic	
  fluctuations	
  is	
  that	
  
of	
  scattering	
  particles	
  when	
  the	
  resonance	
  is	
  achieved.	
  In	
  other	
  words,	
  the	
  particle	
  
distribution	
  is	
  isotropized	
  in	
  the	
  reference	
  frame	
  of	
  the	
  wave.	
  

Although	
  in	
  the	
  reference	
  frame	
  of	
  the	
  waves	
  the	
  momentum	
  is	
  conserved	
  (B	
  does	
  	
  
not	
  make	
  work)	
  in	
  the	
  lab	
  frame	
  the	
  particle	
  momentum	
  changes	
  by	
  	
  	
  

In	
  a	
  time	
  T	
  which	
  is	
  the	
  diffusion	
  time	
  as	
  found	
  in	
  the	
  last	
  lecture.	
  It	
  follows	
  that	
  

THE	
  MOMENTUM	
  CHANGE	
  IS	
  A	
  SECOND	
  ORDER	
  PHENOMENON	
  !!!	
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SECOND ORDER FERMI ACCELERATION

E

E’’

We inject a particle with energy E. In the  
reference frame of  a cloud moving with  
speed b the particle energy is: 

and the momentum along x is:

Assuming	
  that	
  the	
  cloud	
  is	
  very	
  massive	
  compared	
  with	
  the	
  particle,	
  we	
  can	
  assume	
  
that	
  the	
  cloud	
  is	
  unaffected	
  by	
  the	
  scattering,	
  therefore	
  the	
  particle	
  energy	
  in	
  the	
  	
  
cloud	
  frame	
  does	
  not	
  change	
  and	
  the	
  momentum	
  along	
  x	
  is	
  simply	
  inverted,	
  so	
  that	
  
after	
  ‘scattering’	
  p’x! -­‐	
  p’x.	
  The	
  final	
  energy	
  in	
  the	
  Lab	
  frame	
  is	
  therefore:
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Where v is now the dimensionless 
Particle velocity

It follows that: 

and: 

and finally, taking the limit of  non-relativistic clouds g!1: 

We can see that the fractional energy change can be both positive or  
negative, which means that particles can either gain or lose energy,  
depending on whether the particle-cloud scattering is head-on or tail-on. 
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We need to calculate the probability that a scattering occurs head-on or 
Tail-on. The scattering probability along direction m is proportional to the  
Relative velocity in that direction: 

The condition of  normalization to unity: 

leads to A=1/2. It follows that the mean fractional energy change is:

NOTE THAT IF WE DID NOT ASSUME RIGID REFLECTION AT EACH CLOUD 
BUT RATHER ISOTROPIZATION OF THE PITCH ANGLE IN EACH CLOUD, 
THEN WE WOULD HAVE OBTAINED (4/3) b2 INSTEAD OF (8/3) b2

31



THE FRACTIONAL CHANGE IS A SECOND ORDER QUANTITY IN  
β<<1. This is the reason for the name SECOND ORDER FERMI  
ACCELERATION 

The acceleration process can in fact be shown to become more 
Important in the relativistic regime where β!1 

THE PHYSICAL ESSENCE CONTAINED IN THIS SECOND ORDER 
DEPENDENCE IS THAT IN EACH PARTICLE-CLOUD SCATTERING 
THE ENERGY OF THE PARTICLE CAN EITHER INCREASE OR  
DECREASE ! WE ARE LOOKING AT A PROCESS OF DIFFUSION  
IN MOMENTUM SPACE 

THE REASON WHY ON AVERAGE THE MEAN ENERGY INCREASES 
IS THAT HEAD-ON COLLISIONS ARE MORE PROBABLE THAN  
TAIL-ON COLLISIONS 
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WHAT IS DOING THE WORK?

We just found that particles propagating in a magnetic field can change 
their momentum (in modulus and direction)…  

BUT MAGNETIC FIELDS CANNOT CHANGE THE MOMENTUM 
MODULUS… ONLY ELECTRIC FIELDS CAN  

WHAT IS THE SOURCE OF THE ELECTRIC FIELDS???   
Moving Magnetic Fields 

The	
   induced	
  electric	
   field	
   is	
   responsible	
   for	
   this	
   first	
   instance	
  of	
   particle	
  
acceleration	
  

The	
  scattering	
  leads	
  to	
  momentum	
  transfer,	
  but	
  to	
  WHAT?	
  

Recall	
  that	
  particles	
  isotropize	
  in	
  the	
  reference	
  frame	
  of	
  the	
  waves…
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SHOCK SOLUTIONS
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Let us sit in the reference frame in which 
the shock is at rest and look for stationary  
solutions

It is easy to show that aside from the trivial solution in which all quantities  
remain spatially constant, there is a discontinuous solution:

M1	
  is	
  the	
  upstream	
  
Fluid	
  Mach	
  number
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STRONG SHOCKS M
1
>>1

In the limit of  strong shock fronts these expressions get substantially simpler  
and one has:

ONE CAN SEE THAT SHOCKS BEHAVE AS VERY EFFICENT HEATING  
MACHINES IN THAT A LARGE FRACTION OF THE INCOMING RAM PRESSURE  
IS CONVERTED TO INTERNAL ENERGY OF THE GAS BEHIND THE SHOCK FRONT…
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COLLISIONLESS SHOCKS

While shocks in the terrestrial environment are mediated by particle-particle 
collisions, astrophysical shocks are almost always of  a different nature. The 
pathlength for ionized plasmas is of  the order of:   

Absurdly large compared with any reasonable length scale. It follows that  
astrophysical shocks can hardly form because of  particle-particle scattering but 
REQUIRE the mediation of  magnetic fields. In the downstream gas the Larmor 
radius of  particles is: 

The slowing down of  the incoming flow and its isotropization (thermalization) is 
due to the action of  magnetic fields in the shock region (COLLISIONLESS 
SHOCKS)

rL,th ⇡ 1010BµT
1/2
8 cm
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DIFFUSIVE SHOCK ACCELERATION 
OR 

FIRST ORDER FERMI ACCELERATION
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BOUNCING BETWEEN APPROACHING MAGNETIC MIRRORS
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Let us take a relativistic particle with 
energy E~p upstream of  the shock. In the 
downstream frame: 

where β  = u1-u2>0. In the downstream 
frame the direction of  motion of  the  
particle is isotropized and reapproaches 
the shock with the same energy but pitch 
angle μ’
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In the non-relativistic case the particle distribution is, at zeroth order, isotropic 
Therefore: 

The mean value of  the energy change is therefore:

A	
  FEW	
  IMPORTANT	
  POINTS:

I. There	
  are	
  no	
  configurations	
  that	
  lead	
  to	
  losses	
  

II. 	
  The	
  mean	
  energy	
  gain	
  is	
  now	
  first	
  order	
  in	
  β	
  

III. 	
   The	
  energy	
   gain	
   is	
   basically	
   independent	
  of	
   any	
  detail	
   on	
  how	
  particles	
   scatter	
  
back	
  and	
  forth!
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RETURN PROBABILITIES AND SPECTRUM OF ACCELERATED PARTICLES
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ENERGY	
  GAIN:	
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Putting	
  these	
  two	
  expressions	
  together	
  we	
  get:	
  

Therefore,	
  after	
  expanding	
  for	
  U<<1:
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THE	
  SLOPE	
  OF	
  THE	
  DIFFERENTIAL	
  SPECTRUM	
  WILL	
  BE	
  γ+1=(r+2)/(r-­‐1)	
  →	
  2	
  FOR	
  r→4	
  (STRONG	
  
SHOCK)
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DONEC QUIS NUNC

THE TRANSPORT EQUATION APPROACH
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THE TRANSPORT EQUATION APPROACH
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INTEGRATION	
  OF	
  THIS	
  SIMPLE	
  EQUATION	
  GIVES:

1. THE	
   SPECTRUM	
   OF	
   ACCELERATED	
   PARTICLES	
   IS	
   A	
   POWER	
   LAW	
   IN	
   MOMENTUM	
  
EXTENDING	
  TO	
  INFINITE	
  MOMENTA	
  

2. THE	
  SLOPE	
  DEPENDS	
  UNIQUELY	
  ON	
  THE	
  COMPRESSION	
  FACTOR	
  AND	
  IS	
  INDEPENDENT	
  OF	
  
THE	
  DIFFUSION	
  PROPERTIES	
  

3. INJECTION	
  IS	
  TREATED	
  AS	
  A	
  FREE	
  PARAMETER	
  WHICH	
  DETERMINES	
  THE	
  NORMALIZATION

DEFINE THE COMPRESSION FACTOR 
r=u1/u2!4 (strong shock) 

THE SLOPE OF THE SPECTRUM IS

NOTICE THAT:
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TEST PARTICLE SPECTRUM

Mach Number
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SOME IMPORTANT COMMENTS

 THE STATIONARY PROBLEM DOES NOT ALLOW TO HAVE A MAX 
MOMENTUM! 

 THE NORMALIZATION IS ARBITRARY THEREFORE THERE IS NO CONTROL 
ON THE AMOUNT OF ENERGY IN CR 

 AND YET IT HAS BEEN OBTAINED IN THE TEST PARTICLE APPROXIMATION 

 THE SOLUTION DOES NOT DEPEND ON WHAT IS THE MECHANISM THAT 
CAUSES PARTICLES TO BOUNCE BACK AND FORTH 

 FOR STRONG SHOCKS THE SPECTRUM IS UNIVERSAL AND CLOSE TO E-2 

IT HAS BEEN IMPLICITELY ASSUMED THAT WHATEVER SCATTERS THE 
PARTICLES IS AT REST (OR SLOW) IN THE FLUID FRAME

46



MAXIMUM ENERGY
The maximum energy in an accelerator is determined by either the age of  the 
accelerator compared with the acceleration time or the size of  the system 
compared with the diffusion length D(E)/u. The hardest condition is the one that 
dominates. 

Using the diffusion coefficient in the ISM derived from the B/C ratio: 

and the velocity of  a SNR shock as u=5000 km/s one sees that: 

Too long for any useful acceleration ! NEED FOR ADDITIONAL TURBULENCE
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ENERGY LOSSES AND ELECTRONS

For electrons, energy losses make acceleration even harder.  

The maximum energy of  electrons is determined by the condition: 

Where the losses are mainly due to synchrotron and inverse Compton 
Scattering.
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ELECTRONS IN ONE SLIDE

PB 2010
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APPENDIX 1  
HYDRODYNAMICS AND 

SHOCKS
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There are many instances of  astrophysical systems that result in explosive 
phenomena in which large amounts of  mass and energy are released in the 
surrounding medium (interstellar medium or intergalactic medium) at high 
speed. The ejected material behaves as a fluid, though often the importance 
of  magnetic fields cannot be neglected. 

Here I will discuss the basic laws that govern the dynamics of  such a fluid, 
under ideal conditions in which the fluid evolves adiabatically and the effects 
of  thermal conductivity can be neglected.  

I will show how the laws that govern the motion of  such a fluid lead to conclude 
that in some conditions shock waves can develop in the fluid. 

These concepts are of  particular importance in supernova explosions, which  
Are likely to play an important role for particle acceleration in the universe. 

I will restrict the attention to fluid that move subrelativistically, so that only 
Newtonian dynamics applies.  

I will also comment upon the collisionless nature of  the shock waves that  
develop in astrophysics (with some exceptions).
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CONSERVATION OF MASS
Let us consider a fixed infinitesimal volume dV where the matter density is 
r. The mass in the volume rdV remains constant unless mass is allowed to 
Flow in and out of  the volume dV. The total mass is 

and changes in time because of  the flux of  mass per unit time and volume  
across the surface dA that surrounds dV:  

It follows that: Gauss	
  Theorem
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CONSERVATION OF MOMENTUM

An element of  surface suffers a pressure p and a force over the volume: 

The force exerted on the fluid element of  mass ρdV is: 

Where D/Dt is the convective derivative. Let us consider a fluid element that  
is at x at time t and moves with velocity v(x,t). At time t+dt the fluid element is 
located at x+vdt, therefore the acceleration is  

It follows that:
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CONSERVATION OF ENERGY

In the assumption of  adiabatic evolution of  the fluid, the entropy per unit mass  
s is conserved:  

and using conservation of  mass, one immediately gets: 

Introducing the specific enthalpy: w=e+p/ρ, one can write: 

Which leads to: Adiabatic!ds=0
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For a polytropic gas with adiabatic index g one has that the energy density per 
Unit volume is u=p/(g-1) therefore: 

So that 

And the previous equation becomes: 

In the one dimensional stationary case one has 

And using the eqn for conservation of  mass one immediately gets:
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APPENDIX 2: ACCELERATION TIME
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Let us move to the Laplace transform: 

so that the transport equation becomes: 

Integrating this equation between x=0- and x=0+ one gets:
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UPSTREAM

Where we have assumed that:

and assuming that the diffusion coefficient is independent upon location x  
the solution has the form: 
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DOWNSTREAM

Proceeding as in the previous case: 

Notice that in the long time limit, namely s!0 one gets the well known result:
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Notice that one can easily write: 

In this way A1 has the same property as σ1 namely they both vanish in the  
long time limit s!0. 

Substituting in the equation at the shock:
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The homogeneous equation associated with this is: 

Which has the solution: 

The general solution of  the equation has the form: 

therefore the equation for l must be:   

which is readily solved:
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It follows that the solution of  our equation is: 

and carrying out the Laplace inverse transform: 

Note that the pole in the equation for g0 is at s=0 and it is obvious that in the  
limit of  large times one has: 

Therefore one can write:
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Let us introduce the function: 

Taking the Laplace Transform of  this new function one has: 

This means that the solution of  our problem is the spectrum K(p) and infinite 
time times a probability function that at time t one can have a particle with 
momentum p. Indeed one has that: 

Namely the function is correctly normalized. 
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One can now use the obvious property that: 

From which it follows that the average time to get particles with momentum p 
is: 

It follows that:
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